An almost perfect nonlinear (APN) function (necessarily a polynomial function) on a finite field F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {F}$$\end{document} is called exceptional APN, if it is also APN on infinitely many extensions of F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {F}$$\end{document}. In this article we consider the most studied case of F=F2n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {F}=\mathbb {F}_{2^n}$$\end{document}. A conjecture of Janwa–Wilson and McGuire–Janwa–Wilson (1993/1996), settled in 2011, was that the only monomial exceptional APN functions are the monomials xn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x^n$$\end{document}, where n=2k+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n=2^k+1$$\end{document} or n=22k-2k+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n={2^{2k}-2^k+1} $$\end{document} (the Gold or the Kasami exponents, respectively). A subsequent conjecture states that any exceptional APN function is one of the monomials just described. One of our results is that all functions of the form f(x)=x2k+1+h(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(x)=x^{2^k+1}+h(x)$$\end{document} (for any odd degree h(x), with a mild condition in few cases), are not exceptional APN, extending substantially several recent results towards the resolution of the stated conjecture. We also show absolute irreducibility of a class of multivariate polynomials over finite fields (by repeated hyperplane sections, linear transformations, and reductions) and discuss their applications.