Global modeling of NO2 line positions

被引:15
作者
Lukashevskaya A.A. [1 ]
Lyulin O.M. [1 ]
Perrin A. [2 ]
Perevalov V.I. [1 ]
机构
[1] V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, pl. Akademika Zueva 1, Tomsk
[2] Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA), UMR 7583 CNRS et Universités Paris-Est Créteil et Paris 7 Denis Diderot, Institut Paul Simon Laplace (IPSL), 61 Avenue du Général de Gaulle, Créteil Cedex
基金
俄罗斯基础研究基金会;
关键词
!sup]14[!/sup]NO[!sub]2[!/sub; anharmonic resonances; Coriolis type resonances; effective Hamiltonian; electron spin-rotation interactions; global modeling; line positions; nitrogen dioxide;
D O I
10.1134/S1024856015030094
中图分类号
学科分类号
摘要
The global modeling of NO2 line positions has been performed within the effective operators method. One hundred and ninety five parameters of the polyade model of the effective Hamiltonian have been fitted to 28016 line positions collected from the literature for the 0.006–7916 cm−1 wavenumber range. The global root mean square residual of the fit is 0.017 cm−1. The effective Hamiltonian used explicitely takes into account both the spin-rotation interactions within each vibrational state and numerous vibrational-rotational resonances. Indeed, resonances due to the first and second order C-type Coriolis interactions and Fermi and Darling-Dennison resonances had to be considered because of the approximate relations ω1 ≈ ω3 ≈ 2ω2 between three harmonic frequencies of NO2. © 2015, Pleiades Publishing, Ltd.
引用
收藏
页码:216 / 231
页数:15
相关论文
共 38 条
[31]  
Lafferty W.J., Sams R.L., High resolution infrared spectrum of the 2ν<sub>2</sub> + ν<sub>3</sub> and ν<sub>1</sub> + ν<sub>2</sub> + ν<sub>3</sub> bands of <sup>14</sup>N<sup>16</sup>O<sub>2</sub>. Vibration and vibration-rotation constants of the electronic ground state of <sup>14</sup>N<sup>16</sup>O<sub>2</sub> , J. Mol. Spectrosc., 66, 3, pp. 478-492, (1977)
[32]  
Bowater I.C., Brown J.M., Carrington A., Microwave spectroscopy of nonlinear free radicals. I. General theory and application to the Zeeman effect in HCO, Proc. Roy. Soc. Lond., A333, pp. 265-288, (1973)
[33]  
Watson J.K.J., Aspects of quartic and sextic centrifugal effects on rotational energy levels, Vibrational Spectra and Structure, (1977)
[34]  
Brown J.M., Sears T.J., A reduced form of the spin-rotation Hamiltonian for asymmetric-top molecules, with applications to HO<sub>2</sub> and NH<sub>2</sub> , J. Mol. Spectrosc., 75, 1, pp. 111-133, (1979)
[35]  
Tashkun S.A., Perevalov V.I., Teffo J.L., Rothman L.S., Tyuterev V.G., Global fitting of <sup>12</sup>C<sup>16</sup>O<sub>2</sub> vibrational-rotational line positions using the effective Hamiltonian approach, J. Quant. Spectrosc. Radiat. Transfer, 60, 5, pp. 785-801, (1998)
[36]  
Perevalov V.I., Tashkun S.A., Kochanov R.V., Liu A.W., Campargue A., Global modelling of the <sup>14</sup>N<sub>2</sub> <sup>16</sup>O line positions within the framework of the polyad model of effective Hamiltonian, J. Quant. Spectrosc. Radiat. Transfer, 113, 11, pp. 1004-1012, (2012)
[37]  
Morino Y., Tanimoto M., Saito S., Hirota E., Awata R., Tanaka T., Microwave spectrum of nitrogen dioxide in excited vibrational states-equilibrium structure, J. Mol. Spectrosc., 98, 2, pp. 331-348, (1983)
[38]  
Kirmse B., Delon A., Jost R., The NO<sub>2</sub> vibronic levels near the X <sup>2</sup> A <sub>1</sub>-A <sup>2</sup> B <sub>2</sub> vibronic interaction observed by laser induced dispersed fluorescence, J. Chem. Phys., 108, 16, pp. 1-14, (1998)