A new Tikhonov regularization method

被引:0
|
作者
Martin Fuhry
Lothar Reichel
机构
[1] Kent State University,Department of Mathematical Sciences
来源
Numerical Algorithms | 2012年 / 59卷
关键词
Ill-posed problem; Tikhonov regularization; Truncated singular value decomposition; Regularization matrix;
D O I
暂无
中图分类号
学科分类号
摘要
The numerical solution of linear discrete ill-posed problems typically requires regularization, i.e., replacement of the available ill-conditioned problem by a nearby better conditioned one. The most popular regularization methods for problems of small to moderate size, which allow evaluation of the singular value decomposition of the matrix defining the problem, are the truncated singular value decomposition and Tikhonov regularization. The present paper proposes a novel choice of regularization matrix for Tikhonov regularization that bridges the gap between Tikhonov regularization and truncated singular value decomposition. Computed examples illustrate the benefit of the proposed method.
引用
收藏
页码:433 / 445
页数:12
相关论文
共 50 条
  • [1] A new Tikhonov regularization method
    Fuhry, Martin
    Reichel, Lothar
    NUMERICAL ALGORITHMS, 2012, 59 (03) : 433 - 445
  • [2] A new method to compute the spreading resistance by Tikhonov regularization
    Idemen, Mithat
    Alkumru, Ali
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2009, 63 (07) : 562 - 568
  • [3] The Tikhonov regularization method in elastoplasticity
    Azikri de Deus, Hilbeth P.
    Avila S., Claudio R., Jr.
    Belo, Ivan Moura
    Beck, Andre T.
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 4687 - 4707
  • [4] A modified Tikhonov regularization method
    Yang, Xiao-Juan
    Wang, Li
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 180 - 192
  • [5] Extrapolation of Tikhonov Regularization Method
    Haemarik, U.
    Palm, R.
    Raus, T.
    MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (01) : 55 - 68
  • [6] THE TIKHONOV REGULARIZATION METHOD IN ELASTOPLASTICITY
    Azikri de Deus, Hilbeth P.
    Avila da Silva, Claudio R., Jr.
    Belo, Ivan M.
    Costa, Joao Carlos A., Jr.
    COMPUTATIONAL PLASTICITY XI: FUNDAMENTALS AND APPLICATIONS, 2011, : 932 - 943
  • [7] A new interpretation of (Tikhonov) regularization
    Gerth, Daniel
    INVERSE PROBLEMS, 2021, 37 (06)
  • [8] A New Method for Determining the Tikhonov Regularization Parameter of Load Identification
    Gao, Wei
    Yu, Kaiping
    NINTH INTERNATIONAL SYMPOSIUM ON PRECISION ENGINEERING MEASUREMENTS AND INSTRUMENTATION, 2015, 9446
  • [9] New intermediate view synthesis method based on Tikhonov regularization
    Zhang, Q.
    An, P.
    Zhang, Z. -Y.
    Zhang, Qiuwen
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 1217 - 1219
  • [10] New Rule for Choice of the Regularization Parameter in (Iterated) Tikhonov Method
    Raus, T.
    Hamarik, U.
    MATHEMATICAL MODELLING AND ANALYSIS, 2009, 14 (02) : 187 - 198