Stability and time decay rates of the 2D magneto-micropolar equations with partial dissipation

被引:0
作者
Ming Li
机构
[1] Northwest University,Center for Nonlinear Studies, School of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
2D magneto-micropolar equations; Partial dissipation; Stability; Decay estimate; 35Q35; 35B40; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the stability and decay estimates of solutions to the two-dimensional (2D) magneto-micropolar fluid equations with partial dissipation. We first establish the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-decay estimates for global solutions and their derivative with initial data in L1(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1({\mathbb {R}}^2)$$\end{document}. Furthermore, we show the global stability of these solutions in Hs(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s(\mathbb {R}^2)$$\end{document}, and the decay rates of these global solutions and their higher derivatives when the initial data belongs to the negative Sobolev space H˙-l(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}^{-l}(\mathbb {R}^2)$$\end{document} (for each 0≤l<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le l < 1$$\end{document}).
引用
收藏
相关论文
共 75 条
[1]  
Ahmadi G(1974)Universal stability of magneto-micropolar fluid motions Int. J. Eng. Sci. 12 657-663
[2]  
Shahinpoor M(2015)Decay characterization of solutions to dissipative equations J. Lond. Math. Soc. 91 573-595
[3]  
Niche C(2022)Large time behavior for MHD micropolar fluids in J. Differ. Equ. 312 1-44
[4]  
Schonbek M(1999)Magneto-micropolar fluid motion: global existence of strong solutions Abstr. Appl. Anal. 4 109-125
[5]  
Cruz F(2021)Global regularity for 2D fractional magneto-micropolar equation Math. Z. 297 775-802
[6]  
Perusato C(1997)Magneto-micropolar fluid motion: existence and uniqueness of strong solution Math. Nachr. 188 301-319
[7]  
Rojas-Medar M(1998)Magneto-micropolar fluid motion: existence of weak solutions Rev. Mat. Complut. 11 443-460
[8]  
Zingano P(2018)Large time decay of solutions for the 3D magneto-micropolar equations Nonlinear Anal. Real World Appl. 44 479-496
[9]  
Ortega-Torres E(2018)Decay rates for the magneto-micropolar system in Arch. Math. 111 431-442
[10]  
Rojas-Medar M(1934)Sur le mouvement d’un liquide visqueux emplissant I’espace Acta Math. 63 193-248