A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product

被引:0
作者
BujarXh Fejzullahu
Francisco Marcellán
机构
[1] University of Prishtina,Department of Mathematics, Faculty of Mathematics and Natural Sciences
[2] Universidad Carlos III de Madrid,Departamento de Matemáticas, Escuela Politécnica Superior
来源
Journal of Inequalities and Applications | / 2010卷
关键词
Orthogonal Polynomial; Fourier Expansion; Jacobi Polynomial; Sobolev Norm; Extremal Property;
D O I
暂无
中图分类号
学科分类号
摘要
Let [inline-graphic not available: see fulltext] denote the sequence of polynomials orthogonal with respect to the non-discrete Sobolev inner product [inline-graphic not available: see fulltext], where [inline-graphic not available: see fulltext] and [inline-graphic not available: see fulltext] with [inline-graphic not available: see fulltext], [inline-graphic not available: see fulltext]. In this paper, we prove a Cohen type inequality for the Fourier expansion in terms of the orthogonal polynomials [inline-graphic not available: see fulltext] Necessary conditions for the norm convergence of such a Fourier expansion are given. Finally, the failure of almost everywhere convergence of the Fourier expansion of a function in terms of the orthogonal polynomials associated with the above Sobolev inner product is proved.
引用
收藏
相关论文
共 40 条
[1]  
Meijer HG(1997)Determination of all coherent pairs Journal of Approximation Theory 89 321-343
[2]  
Kim DH(2003)Zeros of Jacobi-Sobolev orthogonal polynomials International Mathematical Journal 4 413-422
[3]  
Kwon KH(2002)Zeros of Sobolev orthogonal polynomials following from coherent pairs Journal of Computational and Applied Mathematics 139 253-274
[4]  
Marcellán F(1960)On a conjecture of Littlewood and idempotent measures American Journal of Mathematics 82 191-212
[5]  
Yoon GJ(1982)A Cohen type inequality for ultraspherical series Archiv der Mathematik 38 243-247
[6]  
Meijer HG(1982)A Cohen-type inequality for Jacobi expansions and divergence of Fourier series on compact symmetric spaces Journal of Approximation Theory 35 214-221
[7]  
de Bruin MG(1979)A Cohen type inequality for compact Lie groups Proceedings of the American Mathematical Society 77 359-364
[8]  
Cohen PJ(1948)A new proof of a theorem on rearrangements Journal of the London Mathematical Society 23 163-168
[9]  
Dreseler B(1983)Cohen type inequalities for Jacobi, Laguerre and Hermite expansions SIAM Journal on Mathematical Analysis 14 819-833
[10]  
Soardi PM(1994)Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials SIAM Journal on Mathematical Analysis 25 602-614