Conjugacy classes in Möbius groups

被引:0
|
作者
Krishnendu Gongopadhyay
机构
[1] Transit Campus: MGSIPAP Complex,Mathematics, Indian Institute of Science Education and Research (IISER) Mohali
来源
Geometriae Dedicata | 2011年 / 151卷
关键词
Hyperbolic space; Möbius groups; Conjugacy classes; Real elements; Primary: 51M10; Secondary: 20E45; 58D99;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb H^{n+1}}$$\end{document} denote the n + 1-dimensional (real) hyperbolic space. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}^{n}}$$\end{document} denote the conformal boundary of the hyperbolic space. The group of conformal diffeomorphisms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}^{n}}$$\end{document} is denoted by M(n). Let Mo(n) be its identity component which consists of all orientation-preserving elements in M(n). The conjugacy classification of isometries in Mo(n) depends on the conjugacy of T and T−1 in Mo(n). For an element T in M(n), T and T−1 are conjugate in M(n), but they may not be conjugate in Mo(n). In the literature, T is called real if T is conjugate in Mo(n) to T−1. In this paper we classify real elements in Mo(n). Let T be an element in Mo(n). Corresponding to T there is an associated element To in SO(n + 1). If the complex conjugate eigenvalues of To are given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{e^{i\theta_j}, e^{-i\theta_j}\}, 0 < \theta_j \leq \pi, j=1,\ldots,k}$$\end{document} , then {θ1, . . . , θk} are called the rotation angles of T. If the rotation angles of T are distinct from each-other, then T is called a regular element. After classifying the real elements in Mo(n) we have parametrized the conjugacy classes of regular elements in Mo(n). In the parametrization, when T is not conjugate to T−1 , we have enlarged the group and have considered the conjugacy class of T in M(n). We prove that each such conjugacy class can be induced with a fibration structure.
引用
收藏
页码:245 / 258
页数:13
相关论文
共 50 条
  • [31] Camina groups with few conjugacy classes
    Cangelmi, L.
    NIuktibodh, A. S.
    ALGEBRA & DISCRETE MATHEMATICS, 2010, 9 (02): : 39 - 49
  • [32] CONJUGACY CLASSES IN ALGEBRAIC-GROUPS
    SPRINGER, TA
    LECTURE NOTES IN MATHEMATICS, 1986, 1185 : 175 - 209
  • [33] On groups with small verbal conjugacy classes
    Shumyatsky, Pavel
    de Andrade, Agenor Freitas
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 88 (3-4): : 477 - 485
  • [34] Sign conjugacy classes of the symmetric groups
    Morotti, Lucia
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [35] Groups with Boundedly Cernikov Conjugacy Classes
    De Falco, M.
    Alcober, A. Fernandez
    De Giovanni, F.
    Musella, C.
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2021, 11 : 113 - 125
  • [36] Conjugacy classes in sporadic simple groups
    Suleiman, IAI
    Walsh, PG
    Wilson, RA
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (07) : 3209 - 3222
  • [37] POSITIVE CONJUGACY CLASSES IN WEYL GROUPS
    Lusztig, George
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2020, 15 (04): : 277 - 285
  • [38] Sign conjugacy classes of the alternating groups
    Morotti, Lucia
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1066 - 1079
  • [39] Groups with Restrictions on Infinite Conjugacy Classes
    De Falco, M.
    de Giovanni, F.
    Musella, C.
    Trabelsi, N.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [40] Linear Groups with Restricted Conjugacy Classes
    de Giovanni, F.
    Trombetti, M.
    Wehrfritz, B. A. F.
    RICERCHE DI MATEMATICA, 2022, 71 (01) : 179 - 188