Conjugacy classes in Möbius groups

被引:0
|
作者
Krishnendu Gongopadhyay
机构
[1] Transit Campus: MGSIPAP Complex,Mathematics, Indian Institute of Science Education and Research (IISER) Mohali
来源
Geometriae Dedicata | 2011年 / 151卷
关键词
Hyperbolic space; Möbius groups; Conjugacy classes; Real elements; Primary: 51M10; Secondary: 20E45; 58D99;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb H^{n+1}}$$\end{document} denote the n + 1-dimensional (real) hyperbolic space. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}^{n}}$$\end{document} denote the conformal boundary of the hyperbolic space. The group of conformal diffeomorphisms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}^{n}}$$\end{document} is denoted by M(n). Let Mo(n) be its identity component which consists of all orientation-preserving elements in M(n). The conjugacy classification of isometries in Mo(n) depends on the conjugacy of T and T−1 in Mo(n). For an element T in M(n), T and T−1 are conjugate in M(n), but they may not be conjugate in Mo(n). In the literature, T is called real if T is conjugate in Mo(n) to T−1. In this paper we classify real elements in Mo(n). Let T be an element in Mo(n). Corresponding to T there is an associated element To in SO(n + 1). If the complex conjugate eigenvalues of To are given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{e^{i\theta_j}, e^{-i\theta_j}\}, 0 < \theta_j \leq \pi, j=1,\ldots,k}$$\end{document} , then {θ1, . . . , θk} are called the rotation angles of T. If the rotation angles of T are distinct from each-other, then T is called a regular element. After classifying the real elements in Mo(n) we have parametrized the conjugacy classes of regular elements in Mo(n). In the parametrization, when T is not conjugate to T−1 , we have enlarged the group and have considered the conjugacy class of T in M(n). We prove that each such conjugacy class can be induced with a fibration structure.
引用
收藏
页码:245 / 258
页数:13
相关论文
共 50 条
  • [21] On the computation of conjugacy classes of chevalley groups
    Fleischmann, P
    Janiszczak, I
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (03) : 221 - 234
  • [22] Statistics in conjugacy classes in free groups
    Kenison, George
    Sharp, Richard
    GEOMETRIAE DEDICATA, 2019, 198 (01) : 57 - 70
  • [23] A note on conjugacy classes of finite groups
    Kalra, Hemant
    Gumber, Deepak
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (01): : 31 - 36
  • [24] Notes on conjugacy classes of finite groups
    Chen, Xiaoyou
    Wang, Huiqun
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2018, 21 (7-8): : 1519 - 1522
  • [26] TWISTED CONJUGACY CLASSES IN CHEVALLEY GROUPS
    Nasybullov, T. R.
    ALGEBRA AND LOGIC, 2015, 53 (06) : 481 - 501
  • [27] CONJUGACY CLASSES IN FINITE-GROUPS
    MANN, A
    ISRAEL JOURNAL OF MATHEMATICS, 1978, 31 (01) : 78 - 84
  • [28] On groups with finite verbal conjugacy classes
    Franciosi, S
    de Giovanni, F
    Shumyatsky, P
    HOUSTON JOURNAL OF MATHEMATICS, 2002, 28 (04): : 683 - 689
  • [29] Statistics in conjugacy classes in free groups
    George Kenison
    Richard Sharp
    Geometriae Dedicata, 2019, 198 : 57 - 70
  • [30] PRODUCTS OF CONJUGACY CLASSES IN SIMPLE GROUPS
    Moori, Jamshid
    Tong-Viet, Hung P.
    QUAESTIONES MATHEMATICAE, 2011, 34 (04) : 433 - 439