Decay Estimates for Solutions of Porous Medium Equations with Advection

被引:0
作者
Nicolau M. L. Diehl
Lucineia Fabris
Juliana S. Ziebell
机构
[1] Ciência e Tecnologia do Rio Grande do Sul,Instituto Federal de Educação
[2] Universidade Federal de Santa Maria - Cachoeira do Sul,undefined
[3] Universidade Federal do Rio Grande do Sul,undefined
来源
Acta Applicandae Mathematicae | 2020年 / 165卷
关键词
Porous medium equation; Decay rate; Smoothing effect; Signed solutions; 35B40; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that bounded weak solutions of the Cauchy problem for general degenerate parabolic equations of the form ut+divf(x,t,u)=div(|u|α∇u),x∈Rn,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u_{t} + \operatorname{div}f(x,t,u) = \operatorname{div}\bigl( |u|^{\alpha } \nabla u\bigr), \quad x \in \mathbb{R}^{n} , \ t > 0, $$\end{document} where α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha > 0 $\end{document} is constant, decrease to zero, under fairly broad conditions on the advection flux f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f$\end{document}. Besides that, we derive a time decay rate for these solutions.
引用
收藏
页码:149 / 162
页数:13
相关论文
共 19 条
  • [1] Barrionuevo J.A.(2014)General asymptotic supnorm estimates for solutions of one-dimensional advection-diffusion equations in heterogeneous media Int. J. Partial Differ. Equ. 2014 1-8
  • [2] Oliveira L.S.(2005)Asymptotics of the porous medium equation via Sobolev inequalities J. Funct. Anal. 225 33-62
  • [3] Zingano P.R.(2006)Super and ultracontractive bounds for doubly nonlinear evolution equations Rev. Mat. Iberoam. 22 11-129
  • [4] Bonforte M.(2015)An asymptotic supnorm estimate for solutions of 1-d systems of convection-diffusion equations J. Differ. Equ. 258 2806-2822
  • [5] Grillo G.(1986)On the local behavior of solutions of degenerate parabolic equations with measurable coefficients Ann. Sc. Norm. Super. Pisa 13 487-535
  • [6] Bonforte M.(2017)Smoothing effects for the filtration equation with different powers J. Differ. Equ. 263 2561-2576
  • [7] Grillo G.(2013)Sharp short and long time J. Differ. Equ. 254 2261-2288
  • [8] Braz e Silva P.(2013) bounds for solutions to porous media equations with Neumann boundary conditions Discrete Contin. Dyn. Syst. 33 3599-3640
  • [9] Melo W.(2015)Porous media equation with two weights: smoothing and decay properties of energy solutions via Poincaré inequalities J. Differ. Equ. 259 6960-7011
  • [10] Zingano P.R.(undefined)On uniform and decay estimates for unbounded solutions of partial differential equations undefined undefined undefined-undefined