On the restricted k-Steiner tree problem

被引:0
作者
Prosenjit Bose
Anthony D’Angelo
Stephane Durocher
机构
[1] Carleton University,School of Computer Science
[2] Carleton University,undefined
[3] University of Manitoba,undefined
来源
Journal of Combinatorial Optimization | 2022年 / 44卷
关键词
Minimum ; -Steiner tree; Steiner point restrictions; Computational geometry; Combinatorial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set P of n points in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} and an input line γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, we present an algorithm that runs in optimal Θ(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n\log n)$$\end{document} time and Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n)$$\end{document} space to solve a restricted version of the 1-Steiner tree problem. Our algorithm returns a minimum-weight tree interconnecting P using at most one Steiner point s∈γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in \gamma $$\end{document}, where edges are weighted by the Euclidean distance between their endpoints. We then extend the result to j input lines. Following this, we show how the algorithm of Brazil et al. in Algorithmica 71(1):66–86 that solves the k-Steiner tree problem in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} in O(n2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{2k})$$\end{document} time can be adapted to our setting. For k>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>1$$\end{document}, restricting the (at most) k Steiner points to lie on an input line, the runtime becomes O(nk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{k})$$\end{document}. Next we show how the results of Brazil et al. in Algorithmica 71(1):66–86 allow us to maintain the same time and space bounds while extending to some non-Euclidean norms and different tree cost functions. Lastly, we extend the result to j input curves.
引用
收藏
页码:2893 / 2918
页数:25
相关论文
共 89 条
[1]  
Bae SW(2011)Exact algorithms for the bottleneck Steiner tree problem Algorithmica 61 924-948
[2]  
Choi S(2010)On exact solutions to the Euclidean bottleneck Steiner tree problem Inf Process Lett 110 672-678
[3]  
Lee C(1992)Steiner minimal trees for a class of zigzag lines Algorithmica 7 231-246
[4]  
Tanigawa S(2004)Approximating geometric bottleneck shortest paths Comput Geom 29 233-249
[5]  
Bae SW(1996)Minimal Steiner trees for J Comb Theory Ser A 73 91-110
[6]  
Lee C(2014) square lattices Arch. History Exact Sci. 68 327-354
[7]  
Choi S(2015)On the history of the Euclidean Steiner tree problem Algorithmica 71 66-86
[8]  
Booth RS(1997)Generalised k-Steiner tree problems in normed planes J Comb Theory Ser A 78 51-91
[9]  
Weng JF(1997)Full minimal Steiner trees on lattice sets J Comb Theory Ser A 79 181-208
[10]  
Bose P(2000)Minimal Steiner trees for rectangular arrays of lattice points J Comb Optim 4 187-195