Maximal countably compact spaces and embeddings in MP-spaces

被引:0
|
作者
V. V. Tkachuk
R. G. Wilson
机构
[1] Universidad Autónoma Metropolitana,Departamento de Matemáticas
来源
Acta Mathematica Hungarica | 2015年 / 145卷
关键词
pseudocompact space; maximal pseudocompact space; MP-space; compact space; countably compact space; MCC-space; embedding; functional tightness; Mazurproperty; maximal countably compact space; primary 54D99; secondary 54B10;
D O I
暂无
中图分类号
学科分类号
摘要
We study embeddings in maximal pseudocompact spaces together with maximal countable compactness in the class of Tychonoff spaces. It is proved that under MA +¬\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${+\neg}$$\end{document} CH any compact space of weight κ<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa < \mathfrak{c}}$$\end{document} is a retract of a compact maximal pseudocompact space. If κ is strictly smaller than the first weakly inaccessible cardinal, then the Tychonoff cube [0, 1]κ is maximal countably compact. However, for a measurable cardinal κ, the Tychonoff cube of weight κ is not even embeddable in a maximal countably compact space. We also show that if X is a maximal countably compact space, then the functional tightness of X is countable. It is independent of ZFC whether every compact space of countable tightness must be maximal countably compact. On the other hand, any countably compact space X with the Mazur property (≡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\equiv}$$\end{document} every real-valued sequentially continuous function on X is continuous) must be maximal countably compact. We prove that for any ω-monolithic compact space X, if Cp(X) has the Mazur property, then it is a Fréchet–Urysohn space.
引用
收藏
页码:191 / 204
页数:13
相关论文
共 50 条
  • [41] Rearrangement Estimates and Limiting Embeddings for Anisotropic Besov Spaces
    V. I. Kolyada
    Analysis Mathematica, 2023, 49 : 1053 - 1071
  • [42] Weighted embeddings for function spaces associated with Hermite expansions
    Bui, The Anh
    Li, Ji
    Ly, Fu Ken
    JOURNAL OF APPROXIMATION THEORY, 2021, 264
  • [43] Embeddings of Lorentz spaces of vector-valued martingales
    Jiao, Yong
    Ma, Tao
    Liu, Peide
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (03) : 237 - 240
  • [44] EMBEDDINGS OF BESOV SPACES ON FRACTAL h-SETS
    Caetano, Antonio M.
    Haroske, Dorothee D.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04) : 259 - 295
  • [45] Embeddings of Lorentz spaces of vector-valued martingales
    Yong Jiao
    Tao Ma
    Peide Liu
    Functional Analysis and Its Applications, 2010, 44 : 237 - 240
  • [46] On the convergence and character spectra of compact spaces
    Juhasz, Istvan
    Weiss, William A. R.
    FUNDAMENTA MATHEMATICAE, 2010, 207 (02) : 179 - 196
  • [47] ON D-COMPACT TOPOLOGICAL SPACES
    Qoqazeh, Hamza
    Al-Qudah, Yousef
    Almousa, Mohammad
    Jaradat, Ali
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2021, 39 (5-6): : 883 - 894
  • [48] A Result on ℵ1-Compact Spaces
    A. M. Mohamad
    Acta Mathematica Hungarica, 2001, 90 : 85 - 87
  • [49] Compact spaces with a P-diagonal
    Dow, Alan
    Hart, Klaas Pieter
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (03): : 721 - 726
  • [50] Universal uniform Eberlein compact spaces
    Bell, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) : 2191 - 2197