Maximal countably compact spaces and embeddings in MP-spaces

被引:0
|
作者
V. V. Tkachuk
R. G. Wilson
机构
[1] Universidad Autónoma Metropolitana,Departamento de Matemáticas
来源
Acta Mathematica Hungarica | 2015年 / 145卷
关键词
pseudocompact space; maximal pseudocompact space; MP-space; compact space; countably compact space; MCC-space; embedding; functional tightness; Mazurproperty; maximal countably compact space; primary 54D99; secondary 54B10;
D O I
暂无
中图分类号
学科分类号
摘要
We study embeddings in maximal pseudocompact spaces together with maximal countable compactness in the class of Tychonoff spaces. It is proved that under MA +¬\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${+\neg}$$\end{document} CH any compact space of weight κ<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa < \mathfrak{c}}$$\end{document} is a retract of a compact maximal pseudocompact space. If κ is strictly smaller than the first weakly inaccessible cardinal, then the Tychonoff cube [0, 1]κ is maximal countably compact. However, for a measurable cardinal κ, the Tychonoff cube of weight κ is not even embeddable in a maximal countably compact space. We also show that if X is a maximal countably compact space, then the functional tightness of X is countable. It is independent of ZFC whether every compact space of countable tightness must be maximal countably compact. On the other hand, any countably compact space X with the Mazur property (≡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\equiv}$$\end{document} every real-valued sequentially continuous function on X is continuous) must be maximal countably compact. We prove that for any ω-monolithic compact space X, if Cp(X) has the Mazur property, then it is a Fréchet–Urysohn space.
引用
收藏
页码:191 / 204
页数:13
相关论文
共 50 条
  • [31] Lipschitz and path isometric embeddings of metric spaces
    Le Donne, Enrico
    GEOMETRIAE DEDICATA, 2013, 166 (01) : 47 - 66
  • [32] Lipschitz and path isometric embeddings of metric spaces
    Enrico Le Donne
    Geometriae Dedicata, 2013, 166 : 47 - 66
  • [33] On scattered Eberlein compact spaces
    Murray Bell
    Witold Marciszewski
    Israel Journal of Mathematics, 2007, 158 : 217 - 224
  • [34] On cellular-compact spaces
    I. Juhász
    L. Soukup
    Z. Szentmiklóssy
    Acta Mathematica Hungarica, 2020, 162 : 549 - 556
  • [35] Condensations onto σ-Compact Spaces
    Lipin, A. E.
    Osipov, A., V
    DOKLADY MATHEMATICS, 2022, 106 (02) : 351 - 355
  • [36] On Condensations onto σ-Compact Spaces
    A. E. Lipin
    A. V. Osipov
    Doklady Mathematics, 2022, 106 : 351 - 355
  • [37] On cellular-compact spaces
    Juhasz, I
    Soukup, L.
    Szentmiklossy, Z.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (02) : 549 - 556
  • [38] Maximal margin classification for metric spaces
    Hein, M
    Bousquet, O
    Schölkopf, B
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2005, 71 (03) : 333 - 359
  • [39] Rearrangement Estimates and Limiting Embeddings for Anisotropic Besov Spaces
    Kolyada, V. I.
    ANALYSIS MATHEMATICA, 2023, 49 (04) : 1053 - 1071
  • [40] EMBEDDINGS BETWEEN WEIGHTED COPSON AND CESARO FUNCTION SPACES
    Gogatishvili, Amiran
    Mustafayev, Rza
    Unver, Tugce
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (04) : 1105 - 1132