Maximal countably compact spaces and embeddings in MP-spaces

被引:0
|
作者
V. V. Tkachuk
R. G. Wilson
机构
[1] Universidad Autónoma Metropolitana,Departamento de Matemáticas
来源
Acta Mathematica Hungarica | 2015年 / 145卷
关键词
pseudocompact space; maximal pseudocompact space; MP-space; compact space; countably compact space; MCC-space; embedding; functional tightness; Mazurproperty; maximal countably compact space; primary 54D99; secondary 54B10;
D O I
暂无
中图分类号
学科分类号
摘要
We study embeddings in maximal pseudocompact spaces together with maximal countable compactness in the class of Tychonoff spaces. It is proved that under MA +¬\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${+\neg}$$\end{document} CH any compact space of weight κ<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa < \mathfrak{c}}$$\end{document} is a retract of a compact maximal pseudocompact space. If κ is strictly smaller than the first weakly inaccessible cardinal, then the Tychonoff cube [0, 1]κ is maximal countably compact. However, for a measurable cardinal κ, the Tychonoff cube of weight κ is not even embeddable in a maximal countably compact space. We also show that if X is a maximal countably compact space, then the functional tightness of X is countable. It is independent of ZFC whether every compact space of countable tightness must be maximal countably compact. On the other hand, any countably compact space X with the Mazur property (≡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\equiv}$$\end{document} every real-valued sequentially continuous function on X is continuous) must be maximal countably compact. We prove that for any ω-monolithic compact space X, if Cp(X) has the Mazur property, then it is a Fréchet–Urysohn space.
引用
收藏
页码:191 / 204
页数:13
相关论文
共 50 条
  • [1] Maximal countably compact spaces and embeddings in MP-spaces
    Tkachuk, V. V.
    Wilson, R. G.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) : 191 - 204
  • [2] COUNTABLY Z-COMPACT SPACES
    Al-Ani, A. T.
    ARCHIVUM MATHEMATICUM, 2014, 50 (02): : 97 - 100
  • [3] ABSOLUTELY COUNTABLY COMPACT SPACES
    MATVEEV, MV
    TOPOLOGY AND ITS APPLICATIONS, 1994, 58 (01) : 81 - 92
  • [4] ON COUNTABLY COMPACT QUASI-PSEUDOMETRIZABLE SPACES
    SALBANY, S
    ROMAGUERA, S
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 49 : 231 - 240
  • [5] An algebraic version of Tamano's theorem for countably compact spaces
    Buzyakova, Raushan Z.
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (14) : 2289 - 2291
  • [6] EMBEDDINGS FROM NONCOMPACT SYMMETRIC SPACES TO THEIR COMPACT DUALS
    Chen, Yunxia
    Huang, Yongdong
    Leung, Naichung Conan
    ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (05) : 783 - 802
  • [7] On isometric embeddings of compact metric spaces of a countable dimension
    Iliadis, Stavros
    Naidoo, Inderasan
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (11) : 1284 - 1291
  • [8] Maximal pseudocompact spaces and the Preiss-Simon property
    Alas, Ofelia T.
    Tkachuk, Vladimir V.
    Wilson, Richard G.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (03): : 500 - 509
  • [9] Embeddings of polar spaces
    Seal, GJ
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 102 (01) : 194 - 200
  • [10] EMBEDDINGS OF QUADRATIC SPACES
    Chintala, Vineeth
    DOCUMENTA MATHEMATICA, 2018, 23 : 1621 - 1634