Estimation of the multivariate normal precision and covariance matrices in a star-shape model

被引:0
作者
Dongchu Sun
Xiaoqian Sun
机构
[1] University of Missouri,Department of Statistics
来源
Annals of the Institute of Statistical Mathematics | 2005年 / 57卷
关键词
Star-shape model; maximum likelihood estimator; precision matrix; covariance matrix; Jeffreys prior; reference prior; invariant Haar measure; Bayesian estimator; entropy loss; symmetric loss; inadmissibility;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the star-shape models, where the precision matrix Ω (the inverse of the covariance matrix) is structured by the special conditional independence. We want to estimate the precision matrix under entropy loss and symmetric loss. We show that the maximal likelihood estimator (MLE) of the precision matrix is biased. Based on the MLE, an unbiased estimate is obtained. We consider a type of Cholesky decomposition of Ω, in the sense that Ω=Ψ′Ψ, where Ψ is a lower triangular matrix with positive diagonal elements. A special group\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{G}$$ \end{document}, which is a subgroup of the group consisting all lower triangular matrices, is introduced. General forms of equivariant estimates of the covariance matrix and precision matrix are obtained. The invariant Haar measures on\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{G}$$ \end{document}, the reference prior, and the Jeffreys prior of Ψ are also discussed. We also introduce a class of priors of Ψ, which includes all the priors described above. The posterior properties are discussed and the closed forms of Bayesian estimators are derived under either the entropy loss or the symmetric loss. We also show that the best equivariant estimators with respect to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{G}$$ \end{document} is the special case of Bayesian estimators. Consequently, the MLE of the precision matrix is inadmissible under either entropy or symmetric loss. The closed form of risks of equivariant estimators are obtained. Some numerical results are given for illustration.
引用
收藏
页码:455 / 484
页数:29
相关论文
共 28 条
  • [11] Ofori-Nyarko S.(1990)Estimating the covariance matrix and the generalized variance under a symmetric loss Annals of the Institute of Statistical Mathematics 42 331-343
  • [12] Haff L. R.(1993)Estimating the normal dispersion matrix and the precision matrix from a decision-theoretic point of view: A review Statistical Papers 34 1-26
  • [13] Kiefer J.(1983)Orthogonal equivariant minimax estimators of bivariate normal covariance matrix and precision matrix Calcutta Statistical Association Bulletin 32 23-45
  • [14] Konno Y.(1987)Inadmissibility of the best equivariant estimators of the variance-covariance matrix, the precision matrix, and the generalized variance under entropy loss Statistics & Decisions 5 201-227
  • [15] Krishnamoorthy K.(2003)Efficient estimation of covariance selection models Biometrika 90 809-830
  • [16] Gupta A. K.(1994)Estimation of a covariance matrix using the reference prior The Annals of Statistics 22 1195-1211
  • [17] Kubokawa T.(undefined)undefined undefined undefined undefined-undefined
  • [18] Konno Y.(undefined)undefined undefined undefined undefined-undefined
  • [19] Pal N.(undefined)undefined undefined undefined undefined-undefined
  • [20] Sharma D.(undefined)undefined undefined undefined undefined-undefined