Estimation of the multivariate normal precision and covariance matrices in a star-shape model

被引:0
作者
Dongchu Sun
Xiaoqian Sun
机构
[1] University of Missouri,Department of Statistics
来源
Annals of the Institute of Statistical Mathematics | 2005年 / 57卷
关键词
Star-shape model; maximum likelihood estimator; precision matrix; covariance matrix; Jeffreys prior; reference prior; invariant Haar measure; Bayesian estimator; entropy loss; symmetric loss; inadmissibility;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the star-shape models, where the precision matrix Ω (the inverse of the covariance matrix) is structured by the special conditional independence. We want to estimate the precision matrix under entropy loss and symmetric loss. We show that the maximal likelihood estimator (MLE) of the precision matrix is biased. Based on the MLE, an unbiased estimate is obtained. We consider a type of Cholesky decomposition of Ω, in the sense that Ω=Ψ′Ψ, where Ψ is a lower triangular matrix with positive diagonal elements. A special group\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{G}$$ \end{document}, which is a subgroup of the group consisting all lower triangular matrices, is introduced. General forms of equivariant estimates of the covariance matrix and precision matrix are obtained. The invariant Haar measures on\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{G}$$ \end{document}, the reference prior, and the Jeffreys prior of Ψ are also discussed. We also introduce a class of priors of Ψ, which includes all the priors described above. The posterior properties are discussed and the closed forms of Bayesian estimators are derived under either the entropy loss or the symmetric loss. We also show that the best equivariant estimators with respect to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{G}$$ \end{document} is the special case of Bayesian estimators. Consequently, the MLE of the precision matrix is inadmissible under either entropy or symmetric loss. The closed form of risks of equivariant estimators are obtained. Some numerical results are given for illustration.
引用
收藏
页码:455 / 484
页数:29
相关论文
共 28 条
  • [1] Andersson S. A.(1993)Lattice models for conditional independence in a multivariate normal distribution The Annals of Statistics 21 1318-1358
  • [2] Perlman M. D.(1992)On the development of reference priors Proceedings of the Fourth Valencia International Meeting, Bayesian Statistics 4 35-49
  • [3] Berger J. O.(1981)Amenability: A survey for statistical applications of Hunt-Stein and related conditions on groups Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 57 103-128
  • [4] Bernardo J. M.(1972)Covariance selection Biometrics 28 157-175
  • [5] Bondar J. V.(1987)Best equivariant estimators of a Cholesky decomposition The Annals of Statistics 15 1639-1650
  • [6] Milnes P.(1995)Improved minimax estimators of normal covariance and precision matrices Statistics 26 19-25
  • [7] Dempster A. M.(1980)Empirical Bayes estimation of the multivariate normal covariance matrix The Annals of Statistics 8 586-597
  • [8] Eaton M. L.(1957)Invariance, minimax sequential estimation, and continuous time process The Annals of Mathematical Statistics 28 573-601
  • [9] Olkin I.(2001)Inadmissibility of the maximum likelihood estimator of normal covariance matrices with the lattice conditional independence Journal of Multivariate Analysis 79 33-51
  • [10] Gupta A. K.(1989)Improved minimax estimation of a normal precision matrix The Canadian Journal of Statistics 17 91-102