Broadband photodetection using one-step CVD-fabricated MoS2/MoO2 microflower/microfiber heterostructures

被引:0
作者
D. Mouloua
N. S. Rajput
S. Saitzek
K. Kaja
K. Hoummada
M. El Marssi
M. A. El Khakani
M. Jouiad
机构
[1] University of Picardie Jules Verne,Laboratory of Physics of Condensed Matter
[2] Scientific Pole,UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS)
[3] Institut National de la Recherche Scientifique,IM2NP
[4] Centre-Énergie,undefined
[5] Matériaux et Télécommunications,undefined
[6] Advanced Materials Research Center,undefined
[7] Technology Innovation Institute,undefined
[8] Université d’Artois,undefined
[9] CNRS,undefined
[10] Centrale Lille,undefined
[11] Université de Lille,undefined
[12] Laboratoire National de Métrologie et d’essais (LNE),undefined
[13] Aix Marseille Université,undefined
[14] CNRS,undefined
[15] Université de Toulon,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Molybdenum disulfide (MoS2) has been combined so far with other photodetecting semiconductors as an enhancing agent owing to its optical and electronic properties. Existing approaches demonstrated MoS2-incorporated photodetector devices using complex and costly fabrication processes. Here, we report on simplified one-step on the chemical vapor deposition (CVD) based synthesis of a unique microfiber/microflower MoS2-based heterostructure formed by capturing MoO2 intermediate material during the CVD process. This particular morphology engenders a material chemical and electronic interplay exalting the heterostructure absorption up to ~ 98% over a large spectral range between 200 and 1500 nm. An arsenal of characterization methods were used to elucidate the properties of these novel heterostructures including Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectrometry, high-resolution transmission and scanning electron microscopies, and Kelvin probe force microscopy. Our findings revealed that the MoS2 and the MoO2 crystallize in the hexagonal and monoclinic lattices, respectively. The integration of the MoS2/MoO2 heterostructures into functional photodetectors revealed a strong photoresponse under both standard sun illumination AM1.5G and blue light excitation at 450 nm. Responsivity and detectivity values as high as 0.75 mA W−1 and 1.45 × 107 Jones, respectively, were obtained with the lowest light intensity of 20 mW cm−2 at only 1 V bias. These results demonstrate the high performances achieved by the unique MoS2/MoO2 heterostructure for broadband light harvesting and pave the way for their adoption in photodetection applications.
引用
收藏
相关论文
共 93 条
  • [1] Wang QH(2012)Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnol. 7 699-712
  • [2] Kalantar-Zadeh K(2021)Recent progress in the synthesis of MoS2 thin films for sensing, photovoltaic and plasmonic applications : A review Materials (Basel) 14 3283-6
  • [3] Kis A(2020)Broadband optical properties of monolayer and bulk MoS2 npj 2D Mater. Appl. 4 1-8
  • [4] Coleman JN(2022)Engineering MoSe2/MoS2 heterojunction traps in 2D transistors for multilevel memory, multiscale display, and synaptic functions npj 2D Mater. Appl. 6 1-6
  • [5] Strano MS(2017)Moiré-related in-gap states in a twisted MoS2/graphite heterojunction npj 2D Mater. Appl. 1 1-8
  • [6] Mouloua D(2021)Super-Nernstian ion sensitive field-effect transistor exploiting charge screening in WSe2/MoS2 heterostructure npj 2D Mater. Appl. 5 1-30602
  • [7] Ermolaev GA(2020)A review of molybdenum disulfide (MoS2) based photodetectors: From ultra-broadband, self-powered to flexible devices RSC Adv. 10 30529-2323
  • [8] Jeong Y(2019)Electrophoretic deposition of ZnSnO3/MoS2 heterojunction photoanode with improved photoelectric response by low recombination rate J. Alloys Compd. 810 1801219-9938
  • [9] Lu CI(2018)All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector Adv. Sci. 5 1701611-6904
  • [10] Sanjay S(2017)Large-area, flexible broadband photodetector based on ZnS–MoS2 hybrid on paper substrate Adv. Funct. Mater. 27 2316-15826