On Ternary Clifford Algebras on Two Generators Defined by Extra-Special 3-Groups of Order 27

被引:0
作者
Rafał Abłamowicz
机构
来源
Advances in Applied Clifford Algebras | 2021年 / 31卷
关键词
3-Group; Central product; Clifford algebra; Cyclic group; Elementary abelian group; Extra-special group; Faithful character; -graded algebra; Graded algebra morphism; Group algebra; Homogeneous ideal; Irreducible representation; Quotient algebra; Ternary Clifford algebra; Primary 15A66; 16W50; 20C05; 20C15; 20D15; Secondary 20C40;
D O I
暂无
中图分类号
学科分类号
摘要
The main objective of this work is to show how to construct a ternary Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_3$$\end{document}-graded Clifford algebra on two generators by using a group algebra of an extra-special 3-group G of order 27. The approach used is an extension of the method implemented to classify Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2$$\end{document}-graded Clifford algebras as images of group algebras of Salingaros 2-groups [2]. We will show how non-equivalent irreducible representations of the Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_3$$\end{document}-graded Clifford algebra are determined by two distinct irreducible characters of G of degree 3. We comment on applying this approach to defining p-ary Clifford-like algebras on two generators and finding their irreducible representations on the basis of extra-special p-groups of order p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^3$$\end{document} for p>3.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p > 3.$$\end{document} Finally, we will comment on possibly using this approach to define p-ary Clifford-like algebras on three and more generators by using group central products and their group algebras.
引用
收藏
相关论文
共 11 条
[1]  
Abłamowicz R(2018)A classification of Clifford algebras as images of group algebras of Salingaros vee groups Adv. Appl. Clifford Algebras 28 38-1669
[2]  
Varahagiri M(1997)Hypersymmetry: a J. Math. Phys. 38 1650-454
[3]  
Walley AM(2021)-graded generalization of supersymmetry Adv. Appl. Clifford Algebras 31 13-411
[4]  
Abramov V(1996)Ternary Clifford algebras Lett. Math. Phys. 36 441-742
[5]  
Kerner R(1992)-graded exterior differential calculus and gauge theories of higher order J. Math. Phys. 33 403-undefined
[6]  
Le Roy B(1984)-graded algebras and the cubic root of the supersymmetry translations J. Math. Phys. 25 738-undefined
[7]  
Cerejeiras P(undefined)The relationship between finite groups and Clifford algebras undefined undefined undefined-undefined
[8]  
Vajiac MB(undefined)undefined undefined undefined undefined-undefined
[9]  
Kerner R(undefined)undefined undefined undefined undefined-undefined
[10]  
Kerner R(undefined)undefined undefined undefined undefined-undefined