Generalized Frobenius partitions with 6 colors

被引:0
|
作者
Nayandeep Deka Baruah
Bipul Kumar Sarmah
机构
[1] Tezpur University,Department of Mathematical Sciences
来源
The Ramanujan Journal | 2015年 / 38卷
关键词
Generalized Frobenius partitions; Partition congruences; Integer matrix exact covering system; Primary 05A17; 11P83; Secondary 11C20;
D O I
暂无
中图分类号
学科分类号
摘要
We present the generating function for cϕ6(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\phi _6(n)$$\end{document}, the number of generalized Frobenius partitions of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} with 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6$$\end{document} colors, in terms of Ramanujan’s theta functions and exhibit 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}, and 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-dissections of it that yield the congruences cϕ6(2n+1)≡0(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\phi _6(2n+1)\equiv 0~(\text {mod}~4)$$\end{document}, cϕ6(3n+1)≡0(mod32)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\phi _6(3n+1)\equiv 0~(\text {mod}~3^2)$$\end{document} and cϕ6(3n+2)≡0(mod32)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\phi _6(3n+2)\equiv 0~(\text {mod}~3^2)$$\end{document}.
引用
收藏
页码:361 / 382
页数:21
相关论文
共 24 条
  • [1] Generalized Frobenius partitions with 6 colors
    Baruah, Nayandeep Deka
    Sarmah, Bipul Kumar
    RAMANUJAN JOURNAL, 2015, 38 (02) : 361 - 382
  • [2] Congruences for generalized Frobenius partitions with 4 colors
    Baruah, Nayandeep Deka
    Sarmah, Bipul Kumar
    DISCRETE MATHEMATICS, 2011, 311 (17) : 1892 - 1902
  • [3] Congruences modulo powers of 3 for generalized Frobenius partitions with six colors
    Gu, Chao
    Wang, Liuquan
    Xia, Ernest X. W.
    ACTA ARITHMETICA, 2016, 175 (03) : 291 - 300
  • [4] Congruences modulo powers of 2 for generalized Frobenius partitions with six colors
    Cui, Su-Ping
    Gu, Nancy S. S.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (06) : 1173 - 1181
  • [5] Congruences for modular forms and generalized Frobenius partitions
    Marie Jameson
    Maggie Wieczorek
    The Ramanujan Journal, 2020, 52 : 541 - 553
  • [6] Congruences for modular forms and generalized Frobenius partitions
    Jameson, Marie
    Wieczorek, Maggie
    RAMANUJAN JOURNAL, 2020, 52 (03) : 541 - 553
  • [7] N-colored generalized Frobenius partitions: generalized Kolitsch identities
    Aygin, Zafer Selcuk
    Nguyen, Khoa D.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, : 447 - 469
  • [8] Some congruences for 12-coloured generalized Frobenius partitions
    Cui, Su-Ping
    Gu, Nancy S. S.
    Tang, Dazhao
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024, : 778 - 793
  • [9] SOME CONGRUENCES FOR 12-COLOURED GENERALIZED FROBENIUS PARTITIONS
    Cui, Su-Ping
    Gu, Nancy S. S.
    Tang, Dazhao
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024, 67 (03) : 778 - 793
  • [10] MODULAR FORMS AND k-COLORED GENERALIZED FROBENIUS PARTITIONS
    Chan, Heng Huat
    Wang, Liuquan
    Yang, Yifan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (03) : 2159 - 2205