共 40 条
- [21] The closure property of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H}$\end{document}-tensors under the Hadamard product Journal of Inequalities and Applications, 2017 (1)
- [22] Asymptotics for Alexandrov’s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n $\end{document}-Width of a Compact Set of Analytic Periodic Functions Siberian Mathematical Journal, 2025, 66 (3) : 650 - 655
- [23] Distances Between Non-symmetric Convex Bodies and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$MM^* $$ \end{document}-estimate Positivity, 2000, 4 (2) : 161 - 178
- [24] Norm Inequalities for Commutators of G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{1}$$\end{document} Operators Complex Analysis and Operator Theory, 2016, 10 (1) : 109 - 114
- [25] Norm inequalities in L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}({\mathcal {X}})$$\end{document} and a geometric constant Banach Journal of Mathematical Analysis, 2024, 18 (2)
- [26] Descriptions of Spaces Strongly Dual to Inductive Limits of Subspaces of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{H(D)}$$\end{document} Lobachevskii Journal of Mathematics, 2024, 45 (6) : 2759 - 2769
- [27] Common properties of a and b satisfying abn=bn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab^n = b^{n+1}$$\end{document} and ban=an+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ba^n = a^{n+1}$$\end{document} in Banach algebras Annals of Functional Analysis, 2024, 15 (2)
- [28] One-sided Littlewood–Paley inequality in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbb{R}^n} $\end{document} for 0 < p ≤ 2 Journal of Mathematical Sciences, 2011, 172 (2) : 229 - 242
- [29] A linear operator associated with a certain variation of the Bessel function Jν(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_\nu (z)$$\end{document} and related conformal mappings Journal of Pseudo-Differential Operators and Applications, 2020, 11 (3) : 1331 - 1344
- [30] Concerning the Theory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\tau}$$\end{document}-Measurable Operators Affiliated to a Semifinite von Neumann Algebra. II Lobachevskii Journal of Mathematics, 2023, 44 (10) : 4507 - 4511