Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer

被引:0
作者
Vidhi Malik
Yogesh Kalakoti
Durai Sundar
机构
[1] Indian Institute of Technology (IIT) Delhi,DAILAB, Department of Biochemical Engineering and Biotechnology
来源
BMC Genomics | / 22卷
关键词
Multi-omics integration; Deep learning; Feature selection; Survival outcomes and drug response prediction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 272 条
  • [1] Ferlay J(2015)Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 Int J Cancer 136 E359-E386
  • [2] Soerjomataram I(2009)Global trends in breast cancer incidence and mortality Salud Publica Mex 51 s141-s146
  • [3] Dikshit R(2013)Epidemiological correlates of breast cancer in South India Asian Pac J Cancer Prev 14 5077-5083
  • [4] Eser S(2014)Breast cancer patient stratification using a molecular regularized consensus clustering method Methods 67 304-312
  • [5] Mathers C(2017)Dynamic strategy for personalized medicine: An application to metastatic breast cancer J Biomed Inform 68 50-57
  • [6] Rebelo M(2000)A gene expression database for the molecular pharmacology of cancer Nat Genet 24 236-244
  • [7] Parkin DM(2001)Chemosensitivity prediction by transcriptional profiling Proc Natl Acad Sci U S A 98 10787-10792
  • [8] Forman D(2006)Oncogenic pathway signatures in human cancers as a guide to targeted therapies Nature 439 353-357
  • [9] Bray F(2011)Trial watch: phase II failures: 2008-2010 Nat Rev Drug Discov 10 328-329
  • [10] Porter PL(2013)Clinical approval success rates for investigational cancer drugs Clin Pharmacol Ther 94 329-335