Particle swarm optimization-based feature selection in sentiment classification

被引:0
|
作者
Lin Shang
Zhe Zhou
Xing Liu
机构
[1] Nanjing University,Department of Computer Science and Technology, State Key Laboratory of Novel Software Technology
来源
Soft Computing | 2016年 / 20卷
关键词
Sentiment classification; Feature selection; Particle swarm optimization; Binary particle swarm optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Sentiment classification is one of the important tasks in text mining, which is to classify documents according to their opinion or sentiment. Documents in sentiment classification can be represented in the form of feature vectors, which are employed by machine learning algorithms to perform classification. For the feature vectors, the feature selection process is necessary. In this paper, we will propose a feature selection method called fitness proportionate selection binary particle swarm optimization (F-BPSO). Binary particle swarm optimization (BPSO) is the binary version of particle swam optimization and can be applied to feature selection domain. F-BPSO is a modification of BPSO and can overcome the problems of traditional BPSO including unreasonable update formula of velocity and lack of evaluation on every single feature. Then, some detailed changes are made on the original F-BPSO including using fitness sum instead of average fitness in the fitness proportionate selection step. The modified method is, thus, called fitness sum proportionate selection binary particle swarm optimization (FS-BPSO). Moreover, further modifications are made on the FS-BPSO method to make it more suitable for sentiment classification-oriented feature selection domain. The modified method is named as SCO-FS-BPSO where SCO stands for “sentiment classification-oriented”. Experimental results show that in benchmark datasets original F-BPSO is superior to traditional BPSO in feature selection performance and FS-BPSO outperforms original F-BPSO. Besides, in sentiment classification domain, SCO-FS-BPSO which is modified specially for sentiment classification is superior to traditional feature selection methods on subjective consumer review datasets.
引用
收藏
页码:3821 / 3834
页数:13
相关论文
共 50 条
  • [21] A Forward Search Inspired Particle Swarm Optimization Algorithm for Feature Selection in Classification
    Li, An-Da
    Xue, Bing
    Zhang, Mengjie
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 786 - 793
  • [22] A discrete particle swarm optimization method for feature selection in binary classification problems
    Unler, Alper
    Murat, Alper
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (03) : 528 - 539
  • [23] An improved particle swarm optimization for feature selection
    Chen, Li-Fei
    Su, Chao-Ton
    Chen, Kun-Huang
    INTELLIGENT DATA ANALYSIS, 2012, 16 (02) : 167 - 182
  • [24] An improved particle swarm optimization for feature selection
    Yuanning Liu
    Gang Wang
    Huiling Chen
    Hao Dong
    Xiaodong Zhu
    Sujing Wang
    Journal of Bionic Engineering, 2011, 8 : 191 - 200
  • [25] An Improved Particle Swarm Optimization for Feature Selection
    Liu, Yuanning
    Wang, Gang
    Chen, Huiling
    Dong, Hao
    Zhu, Xiaodong
    Wang, Sujing
    JOURNAL OF BIONIC ENGINEERING, 2011, 8 (02) : 191 - 200
  • [26] Adaptive Particle Swarm Optimization-Based Web Service Selection
    Li, Yingqiu
    Li, Shuhua
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 486 - 490
  • [27] Behavior-based ransomware classification: A particle swarm optimization wrapper-based approach for feature selection
    Abbasi, Muhammad Shabbir
    Al-Sahaf, Harith
    Mansoori, Masood
    Welch, Ian
    APPLIED SOFT COMPUTING, 2022, 121
  • [28] Particle swarm optimization based feature selection using factorial design
    Kocak, Emre
    Orkcu, Haci Hasan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (03): : 879 - 896
  • [29] Unsupervised feature selection based on Markov blanket and particle swarm optimization
    Yintong Wang
    Jiandong Wang
    Hao Liao
    Haiyan Chen
    Journal of Systems Engineering and Electronics, 2017, 28 (01) : 151 - 161
  • [30] Unsupervised feature selection based on Markov blanket and particle swarm optimization
    Wang, Yintong
    Wang, Jiandong
    Liao, Hao
    Chen, Haiyan
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2017, 28 (01) : 151 - 161