Spinel ferrites for resistive random access memory applications

被引:0
作者
Ketankumar Gayakvad
Kaushik Somdatta
Vikas Mathe
Tukaram Dongale
Madhuri W
Ketaki Patankar
机构
[1] K. J. Somaiya College of Science and Commerce,Department of Physics
[2] Mumbai Centre,UGC
[3] Room No.61,DAE Consortium for Scientific Research
[4] R-5 Shed,Novel Material Research Laboratory
[5] BARC Campus,Computational Electronics and Nanoscience Research Laboratory
[6] Savitribai Phule Pune University,Centre for Functional Materials
[7] School of Nanoscience and Technology,Composite Materials Laboratory
[8] Vidyanagar,Department of Physics
[9] Shivaji University,undefined
[10] Vellore Institute of Technology,undefined
[11] Rajaram College,undefined
[12] Ismail Yusuf College of Arts,undefined
[13] Science and Commerce,undefined
来源
Emergent Materials | 2024年 / 7卷
关键词
Spinel ferrite; Spin coating; Artificial intelligence; RRAM; Neuromorphic computing; Hardware security;
D O I
暂无
中图分类号
学科分类号
摘要
Cutting edge science and technology needs high quality data storage devices for their applications in artificial intelligence and digital industries. Resistive random access memory (RRAM) is an emerging nonvolatile memory used for recording and reproducing the digital information. Earlier studies on RRAM applications suggest that spinel ferrite is a potential material. We envisage that the spinel ferrite prepared by a particular route, namely spin coating, will in future optimize the essential parameters for optimal functioning of RRAM. An assertion to our assumptions, few researchers have already obtained important findings for spin coated spinel ferrites. Spin coated spinel ferrites, namely zinc ferrite, nickel ferrite, cobalt ferrite and mixed spinel ferrites, have been investigated for their applications as switching layers in RRAM devices. Particularly, spin coated cobalt ferrite, nickel ferrite and doped nickel ferrite were widely used as resistive switching layers. However, it is noticed that there is a tremendous scope for synthesis and resistive switching characterization of spin coated pure and doped zinc ferrite. Proper doping of special element into spinel ferrite can enhance the resistive switching performance of RRAM devices. Insertion of nano structures and metal layers within switching layer uplifts the performance of spin coated spinel ferrite-based RRAM devices. Active layer in RRAM device synthesized by spin coating technique exhibited good resistive switching properties, namely retention of 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{3}$$\end{document} to 105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{5}$$\end{document} s, endurance in the range of 102\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{2}$$\end{document} to 22,500 cycles and memory window of 102\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{2}$$\end{document} to 106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{6}$$\end{document}. This review article accounts for the optimized parameters obtained especially for the spinel ferrite-based active material synthesized by spin coating justifying the results with appropriate theory. A good co-relation between synthesis parameters and the RRAM functional parameter is separately discussed at the end of review article.
引用
收藏
页码:103 / 131
页数:28
相关论文
共 1426 条
[1]  
Jeong H(2018)Memristor devices for neural networks J. Phys. D Appl. Phys. 52 023003-114
[2]  
Shi L(2020)On-chip tunable memristor-based flash-adc converter for artificial intelligence applications IET Circ. Devices Syst. 14 107-572
[3]  
Humood K(2022)A 28 nm 512 kb adjacent 2t2r rram puf with interleaved cell mirroring and self-adaptive splitting for high density and low ber cryptographic key in iot devices Microelectron. J. 128 546-4152
[4]  
Mohammad B(2021)Radiation effects in advanced and emerging nonvolatile memories IEEE Trans. Nucl. Sci. 68 4144-59
[5]  
Abunahla H(2020)Two-dimensional unipolar memristors with logic and memory functions Nano Lett. 20 52-14
[6]  
Azzam A(2018)Analogue signal and image processing with large memristor crossbars Nat. Electron. 1 1-782
[7]  
Yang J(2022)Emerging of two-dimensional materials in novel memristor Front. Phys. 17 776-470
[8]  
Lin R(2019)Optoelectronic resistive random access memory for neuromorphic vision sensors Nat. Nanotechnol. 14 447-930
[9]  
Zhou K(2021)Neuromorphic vision sensors: Principle, progress and perspectives J. Semicond. 42 1700875-104717
[10]  
Zhang Y(2021)Solution-processed electronics for artificial synapses Mater. Horiz. 8 113443-28445