What do cylinders look like?

被引:3
作者
Itoh J.-I. [1 ]
Vîlcu C. [2 ]
机构
[1] Faculty of Education, Kumamoto University
[2] Institute of Mathematics Simion Stoilow of the Romanian Academy, 014700 Bucharest
关键词
Cut locus; Endpoint; Farthest point mapping;
D O I
10.1007/s00022-009-0012-8
中图分类号
学科分类号
摘要
The farthest point mapping is bijective and involutive on any right circular cylinder of radius r and height h ≤ r(π - 2). For any right cylinder C over a typical convex body K, most points in bd(K) are endpoints of C. © 2009 Birkḧuser Verlag Basel/Switzerland.
引用
收藏
页码:41 / 48
页数:7
相关论文
共 17 条
  • [1] Albu T., Zamfirescu T., Un problème variationnel dans l'espace de Riemann, Rev. Roum. Math. Pures Appl., 10, pp. 1323-1330, (1965)
  • [2] Croft H.T., Falconer K.J., Guy R.K., Unsolved Problems in Geometry, (1991)
  • [3] Gluck H., Singer D., Scattering of geodesic fields I and II, Ann. Math., 108, pp. 347-372, (1978)
  • [4] Gruber P., Die meisten konvexen Körper sind glatt, aber nicht zu glatt, Math. Ann., 229, pp. 259-266, (1977)
  • [5] Gruber P., Et al., Baire categories in convexity, Handbook of Convex Geometry, B, pp. 1327-1346, (1993)
  • [6] Hebda J., Cut loci of submanifolds in space forms and in the geometries of Möbius and Lie, Geom. Dedicata, 55, pp. 75-93, (1995)
  • [7] Itoh J., Rouyer J., Vilcu C., Antipodal convex hypersurfaces, Indag. Math., 19, pp. 411-426, (2008)
  • [8] Klee V.L., Some new results on smoothness and rotundity in normed linear spaces, Math. Ann., 139, pp. 51-63, (1959)
  • [9] Poincare H., Sur les lignes géodésiques des surfaces convexes, Trans. Am. Math. Soc., 6, pp. 237-274, (1905)
  • [10] Shiohama K., Tanaka M., Cut loci and distance spheres on Alexandrov surfaces. Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sém. Congr., 1, pp. 531-559, (1996)