Cops and Robber Game with a Fast Robber on Expander Graphs and Random Graphs

被引:0
作者
Abbas Mehrabian
机构
[1] University of Waterloo,Department of Combinatorics and Optimization
来源
Annals of Combinatorics | 2012年 / 16卷
关键词
05C57; Cops and Robber game; isoperimetric number; random graphs;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a variant of the Cops and Robber game, in which the robber has unbounded speed, i.e., can take any path from her vertex in her turn, but she is not allowed to pass through a vertex occupied by a cop. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_{\infty}(G)}$$\end{document} denote the number of cops needed to capture the robber in a graph G in this variant. We characterize graphs G with c∞(G) =  1, and give an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O( \mid V(G)\mid^2)}$$\end{document} algorithm for their detection. We prove a lower bound for c∞ of expander graphs, and use it to prove three things. The first is that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${np \geq 4.2 {\rm log}n}$$\end{document} then the random graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G= \mathcal{G}(n, p)}$$\end{document} asymptotically almost surely has \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{1}/p \leq \eta_{2}{\rm log}(np)/p}$$\end{document} , for suitable positive constants \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{1}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta_{2}}$$\end{document} . The second is that a fixed-degree random regular graph G with n vertices asymptotically almost surely has \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_{\infty}(G) = \Theta(n)}$$\end{document} . The third is that if G is a Cartesian product of m paths, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n/4km^2 \leq c_{\infty}(G) \leq n/k}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n = \mid V(G)\mid}$$\end{document} and k is the number of vertices of the longest path.
引用
收藏
页码:829 / 846
页数:17
相关论文
共 32 条
  • [1] Azizoğlu M.C.(2004)The bisection width and the isoperimetric number of arrays Discrete Appl. Math. 138 3-12
  • [2] Eğecioğlu Ö.(1988)The isoperimetric number of random regular graphs European J. Combin. 9 241-244
  • [3] Bollobás B.(2010)Cops and Robbers from a distance Theoret. Comput. Sci. 411 3834-3844
  • [4] Bonato A.(2007)Pursuit-evasion in models of complex networks Internet Math. 4 419-436
  • [5] Chiniforooshan E.(1998)Isoperimetric inequalities for Cartesian products of graphs Combin. Probab. Comput. 7 141-148
  • [6] Prałat P.(2009)A witness version of the cops and robber game Discrete Math. 309 3292-3298
  • [7] Bonato A.(2010)Pursuing a fast robber on a graph Theoret. Comput. Sci. 411 1167-1181
  • [8] Prałat P.(1987)Cops and robbers in graphs with large girth and Cayley graphs Discrete Appl. Math. 17 301-305
  • [9] Wang C.(2007)Cops, robbers and graphs Tatra Mt. Math. Publ. 36 163-176
  • [10] Chung F.R.K.(2006)Expander graphs and their applications Bull. Amer. Math. Soc. (N.S.) 43 439-561