Embeddings and associated spaces of Copson—Lorentz spaces

被引:0
|
作者
Martin Křepela
机构
[1] University of Freiburg,Department of Applied Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let m, p, q ∈ (0, ∞) and let u, v, w be nonnegative weights. We characterize validity of the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\int_{0}^{\infty} w(t)\left(f^{*}(t)\right)^{q} \mathrm{d} t\right)^{\frac{1}{q}} \leq C\left(\int_{0}^{\infty} v(t)\left(\int_{t}^{\infty} u(s)\left(f^{*}(s)\right)^{m} \mathrm{d} s\right)^{\frac{p}{m}} \mathrm{d} t\right)^{\frac{1}{p}}$$\end{document} for all measurable functions f defined on ℝn and provide equivalent estimates of the optimal constant C > 0 in terms of the weights and exponents. The obtained conditions characterize the embedding of the Copson—Lorentz space CLm,p(u, v), generated by the functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\|f\|_{C L^{m, p}(u, v)}:=\left(\int_{0}^{\infty} v(t)\left(\int_{t}^{\infty} u(s)\left(f^{*}(s)\right)^{m} \ \mathrm{d} s\right)^{\frac{p}{m}} \mathrm{d} t\right)^{\frac{1}{p}},$$\end{document} into the Lorentz space Λq(w). Moreover, the results are applied to describe the associated space of the Copson—Lorentz space CLm,p(u, v) for the full range of exponents m, p ∈ (0, ∞).
引用
收藏
页码:227 / 266
页数:39
相关论文
共 50 条
  • [41] Some embeddings into the multiplier spaces associated to Besov and Lizorkin-Triebel spaces
    Drihem, D
    Moussai, M
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2002, 21 (01): : 179 - 184
  • [42] ON INTEGRAL-OPERATORS ON THE CONE OF MONOTONE-FUNCTIONS AND ON EMBEDDINGS OF LORENTZ SPACES
    STEPANOV, VD
    DOKLADY AKADEMII NAUK SSSR, 1991, 317 (06): : 1308 - 1311
  • [43] Optimal Embeddings of Bessel and Riesz Type Potentials on the Basis of Weighted Lorentz Spaces
    Karshygina, Gulden Zh.
    INTERNATIONAL CONFERENCE FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS (FAIA2017), 2017, 1880
  • [44] A STUDY OF FUNCTIONAL PROPERTIES OF WEIGHTED LIPSCHITZ-LORENTZ SPACES WITH THEIR COMPACT EMBEDDINGS
    Eryilmaz, Ilker
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (05) : 809 - 821
  • [45] Interpolation of abstract Cesaro, Copson and Tandori spaces
    Lesnik, Karol
    Maligranda, Lech
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (03): : 764 - 785
  • [46] On Cesàro and Copson sequence spaces with weights
    S. H. Saker
    Maryam M. Abuelwafa
    Ahmed M. Zidan
    Dumitru Baleanu
    Journal of Inequalities and Applications, 2021
  • [47] Nuclear Embeddings of Besov Spaces into Zygmund Spaces
    Fernando Cobos
    David E. Edmunds
    Thomas Kühn
    Journal of Fourier Analysis and Applications, 2020, 26
  • [48] Isometric embeddings of compact spaces into Banach spaces
    Dutrieux, Y.
    Lancien, G.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (02) : 494 - 501
  • [49] Embeddings of shearlet coorbit spaces into Sobolev spaces
    Fuhr, Hartmut
    Koch, Rene
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (03)
  • [50] Embeddings of anisotropic Besov spaces into Sobolev spaces
    Bartusel, David
    Fuehr, Hartmut
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (04) : 1380 - 1393