Embeddings and associated spaces of Copson—Lorentz spaces

被引:0
|
作者
Martin Křepela
机构
[1] University of Freiburg,Department of Applied Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let m, p, q ∈ (0, ∞) and let u, v, w be nonnegative weights. We characterize validity of the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\int_{0}^{\infty} w(t)\left(f^{*}(t)\right)^{q} \mathrm{d} t\right)^{\frac{1}{q}} \leq C\left(\int_{0}^{\infty} v(t)\left(\int_{t}^{\infty} u(s)\left(f^{*}(s)\right)^{m} \mathrm{d} s\right)^{\frac{p}{m}} \mathrm{d} t\right)^{\frac{1}{p}}$$\end{document} for all measurable functions f defined on ℝn and provide equivalent estimates of the optimal constant C > 0 in terms of the weights and exponents. The obtained conditions characterize the embedding of the Copson—Lorentz space CLm,p(u, v), generated by the functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\|f\|_{C L^{m, p}(u, v)}:=\left(\int_{0}^{\infty} v(t)\left(\int_{t}^{\infty} u(s)\left(f^{*}(s)\right)^{m} \ \mathrm{d} s\right)^{\frac{p}{m}} \mathrm{d} t\right)^{\frac{1}{p}},$$\end{document} into the Lorentz space Λq(w). Moreover, the results are applied to describe the associated space of the Copson—Lorentz space CLm,p(u, v) for the full range of exponents m, p ∈ (0, ∞).
引用
收藏
页码:227 / 266
页数:39
相关论文
共 50 条
  • [31] Compact operators on sequence spaces associated with the Copson matrix of order α
    Mursaleen, M.
    Edely, Osama H. H.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [32] Sequence Spaces Associated with Fractional Copson Matrix and Compact Operators
    Mursaleen, M.
    Roopaei, H.
    RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [33] Embeddings into (a)-spaces and acc spaces
    Matveev, MV
    TOPOLOGY AND ITS APPLICATIONS, 1997, 80 (1-2) : 169 - 175
  • [34] On Cesaro and Copson sequence spaces with weights
    Saker, S. H.
    Abuelwafa, Maryam M.
    Zidan, Ahmed M.
    Baleanu, Dumitru
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [35] On Copson Ideal Convergent Sequence Spaces
    Idrisi, Mohammad Imran
    Khan, Nazneen
    Saini, Kavita
    Ahmad, Mobeen
    Yasmeen
    Al-Labadi, Manal
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 213 - 226
  • [36] Embeddings between Lorentz sequence spaces are strictly but not finitely strictly singular
    Lang, J.
    Nekvinda, A.
    STUDIA MATHEMATICA, 2023, 272 (01) : 35 - 58
  • [37] Embeddings of Lorentz-type spaces involving weighted integral means
    Gogatishvili, Amiran
    Krepela, Martin
    Pick, Lubos
    Soudsky, Filip
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (09) : 2939 - 2980
  • [38] Are generalized Lorentz "spaces" really spaces?
    Cwikel, M
    Kaminska, A
    Maligranda, L
    Pick, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) : 3615 - 3625
  • [39] Embeddings between Triebel-Lizorkin Spaces on Metric Spaces Associated with Operators
    Georgiadis, Athanasios G.
    Kyriazis, George
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2020, 8 (01): : 418 - 429
  • [40] TENT SPACES BASED ON THE LORENTZ SPACES
    BONAMI, A
    JOHNSON, R
    MATHEMATISCHE NACHRICHTEN, 1987, 132 : 81 - 99