Embeddings and associated spaces of Copson—Lorentz spaces

被引:0
|
作者
Martin Křepela
机构
[1] University of Freiburg,Department of Applied Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let m, p, q ∈ (0, ∞) and let u, v, w be nonnegative weights. We characterize validity of the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\int_{0}^{\infty} w(t)\left(f^{*}(t)\right)^{q} \mathrm{d} t\right)^{\frac{1}{q}} \leq C\left(\int_{0}^{\infty} v(t)\left(\int_{t}^{\infty} u(s)\left(f^{*}(s)\right)^{m} \mathrm{d} s\right)^{\frac{p}{m}} \mathrm{d} t\right)^{\frac{1}{p}}$$\end{document} for all measurable functions f defined on ℝn and provide equivalent estimates of the optimal constant C > 0 in terms of the weights and exponents. The obtained conditions characterize the embedding of the Copson—Lorentz space CLm,p(u, v), generated by the functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\|f\|_{C L^{m, p}(u, v)}:=\left(\int_{0}^{\infty} v(t)\left(\int_{t}^{\infty} u(s)\left(f^{*}(s)\right)^{m} \ \mathrm{d} s\right)^{\frac{p}{m}} \mathrm{d} t\right)^{\frac{1}{p}},$$\end{document} into the Lorentz space Λq(w). Moreover, the results are applied to describe the associated space of the Copson—Lorentz space CLm,p(u, v) for the full range of exponents m, p ∈ (0, ∞).
引用
收藏
页码:227 / 266
页数:39
相关论文
共 50 条
  • [21] Embeddings of Lorentz spaces of vector-valued martingales
    Jiao, Yong
    Ma, Tao
    Liu, Peide
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (03) : 237 - 240
  • [22] Almost compact embeddings between Orlicz and Lorentz spaces
    Musil, Vit
    Pick, Lubos
    Takac, Jakub
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (11)
  • [23] Embeddings of Lorentz spaces of vector-valued martingales
    Yong Jiao
    Tao Ma
    Peide Liu
    Functional Analysis and Its Applications, 2010, 44 : 237 - 240
  • [24] Optimality of embeddings of Bessel-potential-type spaces into Lorentz-Karamata spaces
    Gogatishvili, A
    Opic, B
    Neves, JS
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 : 1127 - 1147
  • [25] On the dual spaces for weighted altered Cesaro and Copson spaces
    Prokhorov, Dmitrii, V
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)
  • [26] Sequence Spaces Associated with Fractional Copson Matrix and Compact Operators
    M. Mursaleen
    H. Roopaei
    Results in Mathematics, 2021, 76
  • [27] Compact operators on sequence spaces associated with the Copson matrix of order α
    M. Mursaleen
    Osama H. H. Edely
    Journal of Inequalities and Applications, 2021
  • [28] Random Euclidean embeddings in finite-dimensional Lorentz spaces
    Fresen, Daniel J.
    STUDIA MATHEMATICA, 2023, 269 (02) : 121 - 138
  • [29] Optimal embeddings of critical Sobolev-Lorentz-Zygmund spaces
    Wadade, Hidemitsu
    STUDIA MATHEMATICA, 2014, 223 (01) : 77 - 95
  • [30] EMBEDDINGS OF ORLICZ-LORENTZ SPACES INTO L1
    Prochno, J.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2021, 32 (01) : 59 - 70