Embeddings and associated spaces of Copson—Lorentz spaces

被引:0
|
作者
Martin Křepela
机构
[1] University of Freiburg,Department of Applied Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let m, p, q ∈ (0, ∞) and let u, v, w be nonnegative weights. We characterize validity of the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\int_{0}^{\infty} w(t)\left(f^{*}(t)\right)^{q} \mathrm{d} t\right)^{\frac{1}{q}} \leq C\left(\int_{0}^{\infty} v(t)\left(\int_{t}^{\infty} u(s)\left(f^{*}(s)\right)^{m} \mathrm{d} s\right)^{\frac{p}{m}} \mathrm{d} t\right)^{\frac{1}{p}}$$\end{document} for all measurable functions f defined on ℝn and provide equivalent estimates of the optimal constant C > 0 in terms of the weights and exponents. The obtained conditions characterize the embedding of the Copson—Lorentz space CLm,p(u, v), generated by the functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\|f\|_{C L^{m, p}(u, v)}:=\left(\int_{0}^{\infty} v(t)\left(\int_{t}^{\infty} u(s)\left(f^{*}(s)\right)^{m} \ \mathrm{d} s\right)^{\frac{p}{m}} \mathrm{d} t\right)^{\frac{1}{p}},$$\end{document} into the Lorentz space Λq(w). Moreover, the results are applied to describe the associated space of the Copson—Lorentz space CLm,p(u, v) for the full range of exponents m, p ∈ (0, ∞).
引用
收藏
页码:227 / 266
页数:39
相关论文
共 50 条
  • [1] Embeddings and associated spaces of Copson-Lorentz spaces
    Krepela, Martin
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 140 (01): : 227 - 266
  • [2] On Spaces Associated with Weighted Cesaro and Copson Spaces
    Stepanov, V. D.
    MATHEMATICAL NOTES, 2022, 111 (3-4) : 470 - 477
  • [3] EMBEDDINGS BETWEEN WEIGHTED COPSON AND CESARO FUNCTION SPACES
    Gogatishvili, Amiran
    Mustafayev, Rza
    Unver, Tugce
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (04) : 1105 - 1132
  • [4] Characterisation of embeddings in Lorentz spaces
    Gogatishvili, A.
    Johansson, M.
    Okpoti, C. A.
    Persson, L.-E.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (01) : 69 - 92
  • [5] Embeddings for Morrey–Lorentz Spaces
    Maria Alessandra Ragusa
    Journal of Optimization Theory and Applications, 2012, 154 : 491 - 499
  • [6] On Spaces Associated with Weighted Cesàro and Copson Spaces
    V. D. Stepanov
    Mathematical Notes, 2022, 111 : 470 - 477
  • [7] On embeddings between classical Lorentz spaces
    Carro, M
    Pick, L
    Soria, J
    Stepanov, VD
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (03): : 397 - 428
  • [8] Embeddings between weighted Copson and Cesàro function spaces
    Amiran Gogatishvili
    Rza Mustafayev
    Tuğçe Ünver
    Czechoslovak Mathematical Journal, 2017, 67 : 1105 - 1132
  • [9] Embeddings for Morrey-Lorentz Spaces
    Ragusa, Maria Alessandra
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (02) : 491 - 499
  • [10] Embeddings for spaces of Lorentz–Sobolev type
    Andreas Seeger
    Walter Trebels
    Mathematische Annalen, 2019, 373 : 1017 - 1056