Some inequalities and limit theorems for fuzzy random variables adopted with α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-values of fuzzy numbers

被引:0
作者
Gholamreza Hesamian
Mohammad Ghasem Akbari
Vahid Ranjbar
机构
[1] Payame Noor University,Department of Statistics
[2] University of Birjand,Department of Statistics
[3] Golsetan University,Department of Statistics
关键词
Fuzzy random variables; Convergence theorem; Inequality; -Values;
D O I
10.1007/s00500-019-04149-2
中图分类号
学科分类号
摘要
In this paper, some essential stochastic inequalities and several convergence theorems were investigated for fuzzy random variables. The classical counterpart relationship between the proposed convergence theorems was also discussed in the fuzzy environment. The main advantage of the proposed method is its minimal requirements for such limit theorems and inequalities compared to the conventional methods used in the fuzzy environments. The previous methods mostly rely on the lower and upper bounds of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cuts of fuzzy random variables, while the proposed method utilizes a unified quantity called α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-value.
引用
收藏
页码:3797 / 3807
页数:10
相关论文
共 66 条
  • [1] Artstein Z(1985)Convexification in limit laws of random sets in Banach spaces Ann Probab 13 307-309
  • [2] Hansen JC(2001)On possibilistic mean value and variance of fuzzy numbers Fuzzy Sets Syst 122 315-326
  • [3] Carlsson C(2010)Dominated convergence for fuzzy random variables Int J Ind Math 2 89-96
  • [4] Fuller R(1979)Fuzzy real algebra: some results Fuzzy Sets Syst 2 327-34
  • [5] Deiri E(1987)The mean value of a fuzzy number Fuzzy Sets Syst 24 279-300
  • [6] Sadeghpour BG(2004)Note on sums of independent fuzzy random variables Fuzzy Sets Syst 143 479-485
  • [7] Yari GH(2008)Strong laws of large numbers for arrays of row wise independent random compact sets and fuzzy random sets Fuzzy Sets Syst 159 3360-3368
  • [8] Dubois D(1986)Elementary fuzzy calculus Fuzzy Sets Syst 18 31-43
  • [9] Prade H(2010)Generalization of the Portmanteau theorem with respect to the pseudo-weak convergence of random closed sets (Veroyatnost i Primenen.) SIAM Theory Probab Appl 54 51-67
  • [10] Dubois D(2018)Fuzzy absolute error distance measure based on a generalized difference operation Int J Syst Sci 49 2454-2462