Ligand Based Virtual Screening Using Self-organizing Maps

被引:0
|
作者
P. B. Jayaraj
S. Sanjay
Koustub Raja
G. Gopakumar
U. C. Jaleel
机构
[1] National Institute of Technology Calicut,Department of Computer Science & Engineering
[2] National Institute of Advanced Studies,Open Source Pharma Foundations
来源
The Protein Journal | 2022年 / 41卷
关键词
Ligand; Virtual screening; Machine learning; Artificial neural network; Self-organizing map; Graphics processing unit;
D O I
暂无
中图分类号
学科分类号
摘要
Conventional drug discovery methods rely primarily on in-vitro experiments with a target molecule and an extensive set of small molecules to choose the suitable ligand. The exploration space for the selected ligand being huge; this approach is highly time-consuming and requires high capital for facilitation. Virtual screening, a computational technique used to reduce this search space and identify lead molecules, can speed up the drug discovery process. This paper proposes a ligand-based virtual screening method using an artificial neural network called self-organizing map (SOM). The proposed work uses two SOMs to predict the active and inactive molecules separately. This SOM based technique can uniquely label a small molecule as active, inactive, and undefined as well. This can reduce the number of false positives in the screening process and improve recall; compared to support vector machine and random forest based models. Additionally, by exploiting the parallelism present in the learning and classification phases of a SOM, a graphics processing unit (GPU) based model yields much better execution time. The proposed GPU-based SOM tool can successfully evaluate a large number of molecules in training and screening phases. The source code of the implementation and related files are available at https://github.com/jayarajpbalakrishnan/2_SOM_SCREEN
引用
收藏
页码:44 / 54
页数:10
相关论文
共 50 条
  • [21] SOM of SOMs: Self-organizing map which maps a group of self-organizing maps
    Furukawa, T
    ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 391 - 396
  • [22] THE SELF-ORGANIZING FEATURE MAPS
    KOHONEN, T
    MAKISARA, K
    PHYSICA SCRIPTA, 1989, 39 (01): : 168 - 172
  • [23] Decentralizing Self-organizing Maps
    Khan, Md Mohiuddin
    Kasmarik, Kathryn
    Garratt, Matt
    AI 2021: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13151 : 480 - 493
  • [24] SELF-ORGANIZING SEMANTIC MAPS
    RITTER, H
    KOHONEN, T
    BIOLOGICAL CYBERNETICS, 1989, 61 (04) : 241 - 254
  • [25] Recursive self-organizing maps
    Voegtlin, T
    NEURAL NETWORKS, 2002, 15 (8-9) : 979 - 991
  • [26] Recursive self-organizing maps
    Voegtlin, T
    Dominey, PF
    ADVANCES IN SELF-ORGANISING MAPS, 2001, : 210 - 215
  • [27] Robust self-organizing maps
    Allende, H
    Moreno, S
    Rogel, C
    Salas, R
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, 2004, 3287 : 179 - 186
  • [28] Self-organizing maps and SVD
    Dvorsky, Jiri
    DEXA 2007: 18TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2007, : 143 - 147
  • [29] Extensions of self-organizing maps
    Trutschl, M
    Cvek, U
    ISIS International Symposium on Interdisciplinary Science, 2005, 755 : 204 - 214
  • [30] Self-organizing visual maps
    Sim, R
    Dudek, G
    PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, : 470 - 475