On the rational approximation of Markov functions, with applications to the computation of Markov functions of Toeplitz matrices

被引:0
作者
Bernhard Beckermann
Joanna Bisch
Robert Luce
机构
[1] Université de Lille,Laboratoire Paul Painlevé UMR 8524, Département de Mathématiques
[2] Gurobi Optimization,undefined
来源
Numerical Algorithms | 2022年 / 91卷
关键词
Matrix function; Toeplitz matrices; Markov function; Rational interpolation; Positive Thiele continued fractions; 15A16; 30E10; 41A20; 65D15; 65F55; 65F60;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the problem of approximating the matrix function f(A) by r(A), with f a Markov function, r a rational interpolant of f, and A a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interpolation error 1 − r/f on the spectral interval of A. By minimizing this upper bound over all interpolation points, we obtain a new, simple, and sharp a priori bound for the relative interpolation error. We then consider three different approaches of representing and computing the rational interpolant r. Theoretical and numerical evidence is given that any of these methods for a scalar argument allows to achieve high precision, even in the presence of finite precision arithmetic. We finally investigate the problem of efficiently evaluating r(A), where it turns out that the relative error for a matrix argument is only small if we use a partial fraction decomposition for r following Antoulas and Mayo. An important role is played by a new stopping criterion which ensures to automatically find the degree of r leading to a small error, even in presence of finite precision arithmetic.
引用
收藏
页码:109 / 144
页数:35
相关论文
共 66 条
[1]  
Beckermann B(2009)Error estimates and evaluation of matrix functions via the Faber transform SIAM J. Numer. Anal. 47 3849-3883
[2]  
Reichel L(1987)Rational approximation of Stieltjes functions by the Carathéodory-Fejèr method Constr. Approx. 3 43-50
[3]  
Braess D(2019)Bounds on the singular values of matrices with displacement structure SIAM Rev. 61 319-344
[4]  
Beckermann B(2008)A new scaling for Newton’s iteration for the polar decomposition and its backward stability SIAM J Matrix Anal. Appl. 30 822-843
[5]  
Townsend A(2001)Approximating the logarithm of a matrix to specified accuracy SIAM J Matrix Anal. Appl. 22 1112-1125
[6]  
Byers R(1991)Displacement structure for Hankel, Vandermonde, and related (derived) matrices Linear Algebra and its Appl. 151 199-227
[7]  
Xu H(1976)The matrix sign function and computations in systems Appl. Math. Comput. 2 63-94
[8]  
Cheng S(2004)A Schur-Parlett algorithm for computing matrix functions SIAM J Matrix Anal. Appl. 25 464-485
[9]  
Higham NJ(2010)Network properties revealed through matrix functions SIAM Rev. 52 696-714
[10]  
Kenney C(1983)On the Faber transform and efficient numerical rational approximation SIAM J. Numer. Anal. 20 989-1000