Additive decomposition of matrices under rank conditions and zero pattern constraints

被引:0
|
作者
Harm Bart
Torsten Ehrhardt
机构
[1] Erasmus University Rotterdam,Econometric Institute
[2] University of California,Mathematics Department
来源
Czechoslovak Mathematical Journal | 2022年 / 72卷
关键词
additive decomposition; rank constraint; zero pattern constraint; directed bipartite graph; L-free directed bipartite graph; permutation L-free directed bipartite graph; Bell number; Stirling partition number; 15A21; 05C50; 15A03; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with additive decompositions A = A1 + … + Ap of a given matrix A, where the ranks of the summands A1, …, Ap are prescribed and meet certain zero pattern requirements. The latter are formulated in terms of directed bipartite graphs.
引用
收藏
页码:825 / 854
页数:29
相关论文
共 50 条
  • [41] Centralizing additive maps on rank r block triangular matrices
    W. L. Chooi
    M. H. A. Mutalib
    L. Y. Tan
    Acta Scientiarum Mathematicarum, 2021, 87 : 63 - 94
  • [42] Rank permutability and additive operators preserving related rank product conditions
    Alieva A.A.
    Guterman A.E.
    Journal of Mathematical Sciences, 2007, 140 (2) : 177 - 185
  • [43] The lower bounds for the rank of matrices and some sufficient conditions for nonsingular matrices
    Dafei Wang
    Xumei Zhang
    Journal of Inequalities and Applications, 2017
  • [44] The lower bounds for the rank of matrices and some sufficient conditions for nonsingular matrices
    Wang, Dafei
    Zhang, Xumei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [45] A Remark on the Rank of Positive Semidefinite Matrices Subject to Affine Constraints
    A. Barvinok
    Discrete & Computational Geometry, 2001, 25 : 23 - 31
  • [46] A remark on the rank of positive semidefinite matrices subject to affine constraints
    Barvinok, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 25 (01) : 23 - 31
  • [47] INFERENCE ON COVARIANCE MATRICES UNDER RANK RESTRICTIONS
    BOIK, RJ
    JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 33 (02) : 230 - 246
  • [48] A SPARSE DECOMPOSITION OF LOW RANK SYMMETRIC POSITIVE SEMIDEFINITE MATRICES
    Hou, Thomas Y.
    Li, Qin
    Zhang, Pengchuan
    MULTISCALE MODELING & SIMULATION, 2017, 15 (01): : 410 - 444
  • [49] Randomized ULV Decomposition for Approximating Low-Rank Matrices
    Kaloorazi, Maboud F.
    Chen, Jie
    CONFERENCE PROCEEDINGS OF 2019 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (IEEE ICSPCC 2019), 2019,
  • [50] HYPERSPECTRAL CLASSIFICATION USING LOW RANK AND SPARSITY MATRICES DECOMPOSITION
    Cao, Hongju
    Shang, Xiaodi
    Yu, Chunyan
    Song, Meiping
    Chang, Chein-, I
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 477 - 480