Additive decomposition of matrices under rank conditions and zero pattern constraints

被引:0
|
作者
Harm Bart
Torsten Ehrhardt
机构
[1] Erasmus University Rotterdam,Econometric Institute
[2] University of California,Mathematics Department
来源
Czechoslovak Mathematical Journal | 2022年 / 72卷
关键词
additive decomposition; rank constraint; zero pattern constraint; directed bipartite graph; L-free directed bipartite graph; permutation L-free directed bipartite graph; Bell number; Stirling partition number; 15A21; 05C50; 15A03; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with additive decompositions A = A1 + … + Ap of a given matrix A, where the ranks of the summands A1, …, Ap are prescribed and meet certain zero pattern requirements. The latter are formulated in terms of directed bipartite graphs.
引用
收藏
页码:825 / 854
页数:29
相关论文
共 50 条
  • [31] RANK CONDITIONS FOR GENERALIZED INVERSES OF PARTITIONED MATRICES
    MARSAGLIA, G
    STYAN, GPH
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1974, 36 (OCT): : 437 - 442
  • [32] Bases of spaces of matrices satisfying rank conditions
    Petrovic, Zoran Z.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (06): : 625 - 631
  • [33] Additive maps preserving rank-bounded sets of matrices
    Akhmedova, E.
    Guterman, A.
    Spiridonov, I.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 709 : 331 - 341
  • [34] ADDITIVE PRESERVERS OF TENSOR PRODUCT OF RANK ONE HERMITIAN MATRICES
    Lim, Ming-Huat
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 356 - 374
  • [35] Minimal Rank Preserving Additive Mappings on Upper Triangular Matrices
    Yu GUO1
    2.Department of Mathematics
    3.Department of Mathematics
    Journal of Mathematical Research with Applications, 2011, (06) : 951 - 964
  • [36] SURJECTIVE ADDITIVE RANK-1 PRESERVERS ON HESSENBERG MATRICES
    Khachorncharoenkul, Prathomjit
    Pianskool, Sajee
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 24 - 34
  • [37] Minimal Rank Preserving Additive Mappings on Upper Triangular Matrices
    Yu GUOJin Chuan HOU Department of MathematicsShanxi Datong UniversityShanxi PRChinaDepartment of MathematicsShanxi UniversityShanxi PRChinaDepartment of MathematicsTaiyuan University of TechnologyShanxi PRChina
    数学研究与评论, 2011, 31 (06) : 951 - 964
  • [38] Additive mappings that do not increase minimal rank of alternate matrices
    Kuzma, B
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (04): : 231 - 241
  • [39] Centralizing additive maps on rank r block triangular matrices
    Chooi, W. L.
    Mutalib, M. H. A.
    Tan, L. Y.
    ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (1-2): : 63 - 94
  • [40] A NOTE ON COMMUTING ADDITIVE MAPS ON RANK K SYMMETRIC MATRICES
    Chooi, Wai Leong
    Tan, Yean Nee
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 734 - 746