Additive decomposition of matrices under rank conditions and zero pattern constraints

被引:0
|
作者
Harm Bart
Torsten Ehrhardt
机构
[1] Erasmus University Rotterdam,Econometric Institute
[2] University of California,Mathematics Department
来源
Czechoslovak Mathematical Journal | 2022年 / 72卷
关键词
additive decomposition; rank constraint; zero pattern constraint; directed bipartite graph; L-free directed bipartite graph; permutation L-free directed bipartite graph; Bell number; Stirling partition number; 15A21; 05C50; 15A03; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with additive decompositions A = A1 + … + Ap of a given matrix A, where the ranks of the summands A1, …, Ap are prescribed and meet certain zero pattern requirements. The latter are formulated in terms of directed bipartite graphs.
引用
收藏
页码:825 / 854
页数:29
相关论文
共 50 条
  • [1] Additive decomposition of matrices under rank conditions and zero pattern constraints
    Bart, Harm
    Ehrhardt, Torsten
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (03) : 825 - 854
  • [2] Rank decomposition under zero pattern constraints and L-free directed graphs
    Bart, H.
    Ehrhardt, T.
    Silbermann, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 621 : 135 - 180
  • [3] Rank decomposition in zero pattern matrix algebras
    Harm Bart
    Torsten Ehrhardt
    Bernd Silbermann
    Czechoslovak Mathematical Journal, 2016, 66 : 987 - 1005
  • [4] Rank decomposition in zero pattern matrix algebras
    Bart, Harm
    Ehrhardt, Torsten
    Silbermann, Bernd
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 987 - 1005
  • [5] Rank decomposition under combinatorial constraints
    Johnson, CR
    Miller, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 251 : 97 - 104
  • [6] Rank decomposition under combinatorial constraints
    Linear Algebra Its Appl, (97):
  • [7] Estimating matching affinity matrices under low-rank constraints
    Dupuy, Arnaud
    Galichon, Alfred
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) : 677 - 689
  • [8] Recovery of Low-Rank Matrices Under Affine Constraints via a Smoothed Rank Function
    Malek-Mohammadi, Mohammadreza
    Babaie-Zadeh, Massoud
    Amini, Arash
    Jutten, Christian
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (04) : 981 - 992
  • [9] Additive decomposition of real matrices
    Li, CK
    Poon, E
    LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (04): : 321 - 326
  • [10] Maximum Likelihood for Matrices with Rank Constraints
    Hauenstein, Jonathan
    Rodriguez, Jose Israel
    Sturmfels, Bernd
    JOURNAL OF ALGEBRAIC STATISTICS, 2014, 5 (01) : 18 - 38