Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study

被引:0
|
作者
Anurika Priyanjali De Silva
Margarita Moreno-Betancur
Alysha Madhu De Livera
Katherine Jane Lee
Julie Anne Simpson
机构
[1] University of Melbourne,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health
[2] Murdoch Childrens Research Institute,Clinical Epidemiology and Biostatistics Unit
[3] Royal Children’s Hospital,Department of Epidemiology and Preventive Medicine
[4] Monash University,Department of Paediatrics
[5] University of Melbourne,undefined
来源
BMC Medical Research Methodology | / 19卷
关键词
Fully conditional specification; Longitudinal categorical data; Missing data; Multiple imputation; Multivariate normal imputation; Restricted transitions;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 9 条
  • [1] Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study
    De Silva, Anurika Priyanjali
    Moreno-Betancur, Margarita
    De Livera, Alysha Madhu
    Lee, Katherine Jane
    Simpson, Julie Anne
    BMC MEDICAL RESEARCH METHODOLOGY, 2019, 19 (1)
  • [2] A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study
    Anurika Priyanjali De Silva
    Margarita Moreno-Betancur
    Alysha Madhu De Livera
    Katherine Jane Lee
    Julie Anne Simpson
    BMC Medical Research Methodology, 17
  • [3] A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study
    De Silva, Anurika Priyanjali
    Moreno-Betancur, Margarita
    De Livera, Alysha Madhu
    Lee, Katherine Jane
    Simpson, Julie Anne
    BMC MEDICAL RESEARCH METHODOLOGY, 2017, 17
  • [4] Handling Missing Values in Longitudinal Panel Data With Multiple Imputation
    Young, Rebekah
    Johnson, David R.
    JOURNAL OF MARRIAGE AND FAMILY, 2015, 77 (01) : 277 - 294
  • [5] Multiple imputation methods for handling missing values in longitudinal studies with sampling weights: Comparison of methods implemented in Stata
    De Silva, Anurika P.
    De Livera, Alysha M.
    Lee, Katherine J.
    Moreno-Betancur, Margarita
    Simpson, Julie A.
    BIOMETRICAL JOURNAL, 2021, 63 (02) : 354 - 371
  • [6] Comparison of Single and MICE Imputation Methods for Missing Values: A Simulation Study
    Pauzi, Nurul Azifah Mohd
    Wah, Yap Bee
    Deni, Sayang Mohd
    Rahim, Siti Khatijah Nor Abdul
    Suhartono
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2021, 29 (02): : 979 - 998
  • [7] A Simulation Study Comparing Multiple Imputation Methods for Incomplete Longitudinal Ordinal Data
    Donneau, A. F.
    Mauer, M.
    Molenberghs, G.
    Albert, A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (05) : 1311 - 1338
  • [8] Simulation-Based Study Comparing Multiple Imputation Methods for Non-Monotone Missing Ordinal Data in Longitudinal Settings
    Donneau, A. F.
    Mauer, M.
    Lambert, P.
    Molenberghs, G.
    Albert, A.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2015, 25 (03) : 570 - 601
  • [9] Comparison of Multiple Imputation Methods for Categorical Survey Items with High Missing Rates: Application to the Family Life, Activity, Sun, Health and Eating (FLASHE) Study
    Liu, Benmei
    Hennessy, Erin
    Oh, April
    Dwyer, Laura A.
    Nebeling, Linda
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2018, 17 (01) : 1 - 21