A photon-driven micromotor can direct nerve fibre growth

被引:4
作者
Wu, Tao [1 ,2 ]
Nieminen, Timo A. [3 ]
Mohanty, Samarendra [1 ,2 ]
Miotke, Jill [4 ]
Meyer, Ronald L. [4 ]
Rubinsztein-Dunlop, Halina [3 ]
Berns, Michael W. [1 ,2 ,4 ,5 ]
机构
[1] Univ Calif Irvine, Beckman Laser Inst, Irvine, CA 92617 USA
[2] Univ Calif Irvine, Med Clin, Irvine, CA 92617 USA
[3] Univ Queensland, Sch Math & Phys, Quantum Sci Lab, Brisbane, Qld 4072, Australia
[4] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92617 USA
[5] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92617 USA
基金
澳大利亚研究理事会;
关键词
GUIDED NEURONAL GROWTH; NEURITE GROWTH; FILOPODIA; ADULT; AXONS;
D O I
10.1038/NPHOTON.2011.287
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Axonal path-finding is important in the development of the nervous system, nerve repair and nerve regeneration. The behaviour of the growth cone at the tip of the growing axon determines the direction of axonal growth and migration. We have developed an optical-based system to control the direction of growth of individual axons (nerve fibres) using laser-driven spinning birefringent spheres. One or two optical traps position birefringent beads adjacent to growth cones of cultured goldfish retinal ganglion cell axons. Circularly polarized light with angular momentum causes the trapped bead to spin. This creates a localized microfluidic flow generating an estimated 0.17 pN shear force against the growth cone that turns in response to the shear. The direction of axonal growth can be precisely manipulated by changing the rotation direction and position of this optically driven micromotor. A physical model estimating the shear force density on the axon is described.
引用
收藏
页码:62 / 67
页数:6
相关论文
共 31 条
[1]   Heterotrimeric G protein activation rapidly inhibits outgrowth of optic axons from adult and embryonic mouse, and goldfish retinal explants [J].
Bates, CA ;
Meyer, RL .
BRAIN RESEARCH, 1996, 714 (1-2) :65-75
[2]   Optical microrheology using rotating laser-trapped particles [J].
Bishop, AI ;
Nieminen, TA ;
Heckenberg, NR ;
Rubinsztein-Dunlop, H .
PHYSICAL REVIEW LETTERS, 2004, 92 (19) :198104-1
[3]   Promotion of neural cell adhesion by electrochemically generated and functionalized polymer films [J].
Blau, A ;
Weinl, C ;
Mack, J ;
Kienle, S ;
Jung, G ;
Ziegler, C .
JOURNAL OF NEUROSCIENCE METHODS, 2001, 112 (01) :65-73
[4]   Guided neuronal growth using optical line traps [J].
Carnegie, D. J. ;
Stevenson, D. J. ;
Mazilu, M. ;
Gunn-Moore, F. ;
Dholakia, K. .
OPTICS EXPRESS, 2008, 16 (14) :10507-10517
[5]   Traction Dynamics of Filopodia on Compliant Substrates [J].
Chan, Clarence E. ;
Odde, David J. .
SCIENCE, 2008, 322 (5908) :1687-1691
[6]   Properties of the Force Exerted by Filopodia and Lamellipodia and the Involvement of Cytoskeletal Components [J].
Cojoc, Dan ;
Difato, Francesco ;
Ferrari, Enrico ;
Shahapure, Rajesh B. ;
Laishram, Jummi ;
Righi, Massimo ;
Di Fabrizio, Enzo M. ;
Torre, Vincent .
PLOS ONE, 2007, 2 (10)
[7]   Multipoint holographic optical velocimetry in microfluidic systems [J].
Di Leonardo, R ;
Leach, J ;
Mushfique, H ;
Cooper, JM ;
Ruocco, G ;
Padgett, MJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (13)
[8]   Guiding neuronal growth with light [J].
Ehrlicher, A ;
Betz, T ;
Stuhrmann, B ;
Koch, D ;
Milner, V ;
Raizen, MG ;
Käs, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :16024-16028
[9]   The biophysics of neuronal growth [J].
Franze, Kristian ;
Guck, Jochen .
REPORTS ON PROGRESS IN PHYSICS, 2010, 73 (09)
[10]   Optical alignment and spinning of laser-trapped microscopic particles [J].
Friese, MEJ ;
Nieminen, TA ;
Heckenberg, NR ;
Rubinsztein-Dunlop, H .
NATURE, 1998, 394 (6691) :348-350