Non-Gaussian Complex Random Fields, their Skeletons and Path Measures

被引:0
|
作者
T. Deck
机构
[1] Universität Mannheim,Fakultät für Mathematik und Informatik
来源
Potential Analysis | 2006年 / 24卷
关键词
holomorphic functionals; quasi invariance of path measures;
D O I
暂无
中图分类号
学科分类号
摘要
This work investigates complex random fields Z, which have a rotation invariant path measure. Fields of this type are constructed and analyzed in terms of (pathwise convergent) L2-expansions, and quasi invariance properties of their path measures are studied. The results are used to investigate ℋL2(Z), the space of holomorphic L2-functionals of Z. Conditions are given such that every F∈ℋL2(Z) admits an L2-power series expansion, and a general skeleton theorem is proved, which justifies the notion ‘holomorphic’.
引用
收藏
页码:63 / 86
页数:23
相关论文
共 50 条
  • [31] SIMULATION OF RANDOM NON-GAUSSIAN BACKGROUNDS
    KAZAKOV, VA
    AFRIKANOV, SA
    SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1977, 44 (09): : 523 - 525
  • [32] SHADOWING BY NON-GAUSSIAN RANDOM SURFACES
    BROWN, GS
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1980, 28 (06) : 788 - 790
  • [33] NON-GAUSSIAN RANDOM-WALKS
    BALL, RC
    HAVLIN, S
    WEISS, GH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12): : 4055 - 4059
  • [34] A NON-GAUSSIAN MODEL FOR RANDOM SURFACES
    ADLER, RJ
    FIRMAN, D
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 303 (1479): : 433 - 462
  • [35] CUMULANT ANALYSIS OF FUNCTIONAL NONLINEAR TRANSFORMATION OF NON-GAUSSIAN RANDOM PROCESSES AND FIELDS
    DUBKOV, AA
    MALAKHOV, AN
    DOKLADY AKADEMII NAUK SSSR, 1975, 222 (04): : 793 - 796
  • [36] A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non-Gaussian Random Fields
    Chagneau, Pierrette
    Mortier, Frederic
    Picard, Nicolas
    Bacro, Jean-Noel
    BIOMETRICS, 2011, 67 (01) : 97 - 105
  • [37] Phase correlations in non-Gaussian fields
    Matsubara, T
    ASTROPHYSICAL JOURNAL, 2003, 591 (02): : L79 - L82
  • [38] NON-GAUSSIAN ASYMPTOTIC-BEHAVIOR OF RANDOM CONCENTRATION FIELDS WITH LONG TAILS
    VLAD, MO
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1994, 8 (18): : 2489 - 2501
  • [39] STOCHASTIC ELLIPTIC OPERATORS DEFINED BY NON-GAUSSIAN RANDOM FIELDS WITH UNCERTAIN SPECTRUM
    Soize, C.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 105 : 113 - 136
  • [40] Space-time extreme value statistics of non-Gaussian random fields
    Naess, A.
    Batsevych, O.
    PROBABILISTIC ENGINEERING MECHANICS, 2012, 28 : 169 - 175