Non-Gaussian Complex Random Fields, their Skeletons and Path Measures

被引:0
|
作者
T. Deck
机构
[1] Universität Mannheim,Fakultät für Mathematik und Informatik
来源
Potential Analysis | 2006年 / 24卷
关键词
holomorphic functionals; quasi invariance of path measures;
D O I
暂无
中图分类号
学科分类号
摘要
This work investigates complex random fields Z, which have a rotation invariant path measure. Fields of this type are constructed and analyzed in terms of (pathwise convergent) L2-expansions, and quasi invariance properties of their path measures are studied. The results are used to investigate ℋL2(Z), the space of holomorphic L2-functionals of Z. Conditions are given such that every F∈ℋL2(Z) admits an L2-power series expansion, and a general skeleton theorem is proved, which justifies the notion ‘holomorphic’.
引用
收藏
页码:63 / 86
页数:23
相关论文
共 50 条
  • [21] Inference on dynamic models for non-Gaussian random fields using INLA
    Cortes, R. X.
    Martins, T. G.
    Prates, M. O.
    Silva, B. A.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2017, 31 (01) : 1 - 23
  • [22] NON-GAUSSIAN RANDOM FIELDS FROM INDEPENDENT SOURCES IN DESCRETE LATTICE
    SHTREMEL, MA
    MELNICHENKO, AS
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1977, (06): : 133 - 139
  • [23] Numerical analysis of structural systems subjected to non-Gaussian random fields
    Gioffrè, M
    Gusella, V
    MECCANICA, 2002, 37 (1-2) : 115 - 128
  • [24] PEAK NUMBER DENSITY OF NON-GAUSSIAN RANDOM-FIELDS - COMMENT
    COLES, P
    PHYSICAL REVIEW LETTERS, 1988, 61 (22) : 2626 - 2626
  • [25] Modelling non-Gaussian random fields using transformations and Hermite polynomials
    O'Callaghan, M
    PROBABILISTIC ENGINEERING MECHANICS, 2001, 16 (03) : 245 - 252
  • [26] Construction of non-Gaussian random fields with any given correlation structure
    Ma, Chunsheng
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (03) : 780 - 787
  • [27] Simulation of multi-dimensional non-gaussian non-stationary random fields
    Sakamoto, S
    Ghanem, R
    PROBABILISTIC ENGINEERING MECHANICS, 2002, 17 (02) : 167 - 176
  • [28] A biorthogonal decomposition for the identification and simulation of non-stationary and non-Gaussian random fields
    Zentner, I.
    Ferre, G.
    Poirion, F.
    Benoit, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 314 : 1 - 13
  • [29] A non-Gaussian approach to risk measures
    Bormetti, Giacomo
    Cisana, Enrica
    Montagna, Guido
    Nicrosini, Oreste
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 376 (532-542) : 532 - 542
  • [30] Simulation of non-Gaussian random vibration
    Xu, Fei
    Li, Chuanri
    Jiang, Tongmin
    Rong, Shuanglong
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (09): : 1239 - 1244