holomorphic functionals;
quasi invariance of path measures;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This work investigates complex random fields Z, which have a rotation invariant path measure. Fields of this type are constructed and analyzed in terms of (pathwise convergent) L2-expansions, and quasi invariance properties of their path measures are studied. The results are used to investigate ℋL2(Z), the space of holomorphic L2-functionals of Z. Conditions are given such that every F∈ℋL2(Z) admits an L2-power series expansion, and a general skeleton theorem is proved, which justifies the notion ‘holomorphic’.