Perturbation for fractional-order evolution equation

被引:0
|
作者
Mohamed A. E. Herzallah
Ahmed M. A. El-Sayed
Dumitru Baleanu
机构
[1] Zagazig University,Faculty of Science
[2] Alexandria University,Faculty of Science
[3] Çankaya University,Department of Mathematics and Computer Science
[4] Institute of Space Sciences,undefined
来源
Nonlinear Dynamics | 2010年 / 62卷
关键词
Evolution equation; Evolutionary integral equation; Fractional order derivative; Perturbation problem;
D O I
暂无
中图分类号
学科分类号
摘要
Fractional calculus has gained a lot of importance during the last decades, mainly because it has become a powerful tool in modeling several complex phenomena from various areas of science and engineering. This paper gives a new kind of perturbation of the order of the fractional derivative with a study of the existence and uniqueness of the perturbed fractional-order evolution equation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{C}D^{\alpha-\epsilon}_{0+}u(t)=A~^{C}D^{\delta}_{0+}u(t)+f(t),$\end{document}u(0)=uo, α∈(0,1), and 0≤ε, δ<α under the assumption that A is the generator of a bounded Co-semigroup. The continuation of our solution in some different cases for α, ε and δ is discussed, as well as the importance of the obtained results is specified.
引用
收藏
页码:593 / 600
页数:7
相关论文
共 50 条
  • [1] Perturbation for fractional-order evolution equation
    Herzallah, Mohamed A. E.
    El-Sayed, Ahmed M. A.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2010, 62 (03) : 593 - 600
  • [2] Continuation and maximal regularity of fractional-order evolution equation
    El-Sayed, AMA
    Herzallah, MAE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (01) : 340 - 350
  • [3] On the fractional-order logistic equation
    El-Sayed, A. M. A.
    El-Mesiry, A. E. M.
    El-Saka, H. A. A.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (07) : 817 - 823
  • [4] On Semianalytical Study of Fractional-Order Kawahara Partial Differential Equation with the Homotopy Perturbation Method
    Sinan, Muhammad
    Shah, Kamal
    Khan, Zareen A.
    Al-Mdallal, Qasem
    Rihan, Fathalla
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [5] A class of uncertain fractional-order systems control with perturbation
    Huang, Jiaoru
    Peng, Yuhao
    Chen, Chaobo
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 1362 - 1367
  • [6] Fractional-order diffusion-wave equation
    ElSayed, AMA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 311 - 322
  • [7] Numerical solutions to the fractional-order wave equation
    Khader, M. M.
    Inc, Mustafa
    Adel, M.
    Akinlar, M. Ali
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (05):
  • [8] Dynamical analysis of fractional-order Mathieu equation
    Wen, Shaofang
    Shen, Yongjun
    Li, Xianghong
    Yang, Shaopu
    Xing, Haijun
    JOURNAL OF VIBROENGINEERING, 2015, 17 (05) : 2696 - 2709
  • [9] The fractional-order governing equation of Levy motion
    Benson, DA
    Wheatcraft, SW
    Meerschaert, MM
    WATER RESOURCES RESEARCH, 2000, 36 (06) : 1413 - 1423
  • [10] HEAT CONDUCTION EQUATION IN FRACTIONAL-ORDER DERIVATIVES
    Alkhasov, A. B.
    Meilanov, R. P.
    Shabanova, M. R.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2011, 84 (02) : 332 - 341