The Theory of Formal Languages and Identities of Nonassociative Algebras

被引:0
作者
M. V. Zaicev
D. D. Repovš
机构
[1] Moscow State University,
[2] University of Ljubljana,undefined
来源
Siberian Mathematical Journal | 2020年 / 61卷
关键词
identity; codimension; binary word; combinatorial complexity;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the numerical characteristics of identities of nonassociative algebras and propose a method for constructing some algebra A(w) with prescribed properties of the codimension growth function. The growth of codimensions of A(w) is completely determined by the combinatorial complexity of the language of subwords of w.
引用
收藏
页码:255 / 260
页数:5
相关论文
共 25 条
[1]  
Giambruno A(2006)Algebras with intermediate growth of the codimensions Adv. Appl. Math. 37 360-377
[2]  
Mishchenko S(2008)Codimensions of algebras and growth functions Adv. Math. 217 1027-1052
[3]  
Zaicev M(2017)Sturmian words and uncountable set of almost nilpotent varieties of quadratic growth Moscow Univ. Math. Bull. 72 251-254
[4]  
Giambruno A(1972)Existence of identities in Israel J. Math. 11 131-152
[5]  
Mishchenko S(1998) ⊗ Adv. Math. 140 145-155
[6]  
Zaicev M(1999)On codimension growth of finitely generated associative algebras Adv. Math. 142 221-243
[7]  
Mishchenko S P(2008)Exponential codimension growth of PI algebras: an exact estimate Adv. Appl. Math. 41 52-75
[8]  
Panov N P(2014)Properties of hook Schur functions with applications to p.i. algebras Bull. Lond. Math. Soc. 46 771-778
[9]  
Regev A(2014)Growth of polynomial identities: Is the sequence of codimensions eventually non-decreasing? Electron. Res. Announc. Math. Sci. 21 113-119
[10]  
Giambruno A(2016)On existence of PI-exponents of codimension growth Forum Mat. 28 649-656