Perfect sampling of a single-server queue with periodic Poisson arrivals

被引:0
|
作者
Yaofei Xiong
Duncan J. Murdoch
David A. Stanford
机构
[1] University of Western Ontario,Department of Statistical and Actuarial Science
来源
Queueing Systems | 2015年 / 80卷
关键词
Time-varying queues; Periodic Poisson process; Perfect sampling; Regenerative method; Dominated CFTP; 60J22; 65C05; 60K25; 68U20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present algorithms for the perfect sampling of single-server time-varying queues with periodic Poisson arrivals under the first come first served (FCFS) discipline. The service durations have periodically time-dependent exponential (Mt/Mt/1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm M _t/\mathrm M _t/1$$\end{document}) or homogeneous general (Mt/G/1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm M _t/\mathrm G /1$$\end{document}) distributions. Assuming a cycle length of 1, we construct discrete dominating processes at the integer instants n∈{0,±1,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \{0, \pm 1, \ldots \}$$\end{document}. Perfect sampling of the Mt/Mt/1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm M _t/\mathrm M _t/1$$\end{document} queue is obtained using dominated CFTP (Kendall and Møller 2000) when the system is relatively lightly loaded or with the regenerative method (Sigman 2012) in the general case. For the Mt/G/1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm M _t/\mathrm G /1$$\end{document} queue, perfect sampling is achieved with dominated CFTP.
引用
收藏
页码:15 / 33
页数:18
相关论文
共 50 条