Complete CMC spacelike hypersurfaces immersed in a Lorentzian product space

被引:0
|
作者
Cícero P. Aquino
Henrique F. de Lima
Eraldo A. Lima
机构
[1] Universidade Federal do Piauí,Departamento de Matemática
[2] Universidade Federal de Campina Grande,Departamento de Matemática
[3] Universidade Federal do Ceará,Departamento de Matemática
来源
Archiv der Mathematik | 2015年 / 104卷
关键词
Primary 53C42; Secondary 53B30; 53C50; Lorentzian product spaces; Complete spacelike hypersurfaces; Mean curvature; Normal hyperbolic angle; Entire vertical graphs;
D O I
暂无
中图分类号
学科分类号
摘要
We use Bochner’s formula jointly with the generalized maximum principle of Omori-Yau and an extension of Liouville’s theorem due to Yau in order to show that a complete spacelike hypersurface Σn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^{n}}$$\end{document} immersed with constant mean curvature in a Lorentzian product space M¯n+1=-R×Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{M}^{n+1}=-{\mathbb{R}}{\times}M^{n}}$$\end{document}, whose fiber Mn has nonnegative sectional curvature, must be a slice, provided that Σn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^{n}}$$\end{document} is bounded away from the future (or past) infinity of M¯n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{M}^{n+1}}$$\end{document} and that its normal hyperbolic angle is bounded. We also study the rigidity of entire vertical graphs with constant mean curvature in such an ambient space.
引用
收藏
页码:577 / 587
页数:10
相关论文
共 50 条
  • [1] Complete CMC spacelike hypersurfaces immersed in a Lorentzian product space
    Aquino, Cicero P.
    de Lima, Henrique F.
    Lima, Eraldo A., Jr.
    ARCHIV DER MATHEMATIK, 2015, 104 (06) : 577 - 587
  • [2] Complete spacelike CMC hypersurfaces in a Lorentzian space form
    Yang, Biaogui
    Liu, Ximin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (3-4): : 513 - 525
  • [3] Generalized maximum principles and the unicity of complete spacelike hypersurfaces immersed in a Lorentzian product space
    De Lima H.F.
    Lima Jr. E.A.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55 (1): : 59 - 75
  • [4] ON THE QUADRIC CMC SPACELIKE HYPERSURFACES IN LORENTZIAN SPACE FORMS
    Aquino, Cicero P.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    COLLOQUIUM MATHEMATICUM, 2016, 145 (01) : 89 - 98
  • [5] On the behavior at infinity of complete spacelike hypersurfaces in a Lorentzian space form
    Velasquez, Marco A. L.
    de Lima, Henrique F.
    Leite, Ary V. F.
    JOURNAL OF GEOMETRY, 2024, 115 (03)
  • [6] A NOTE ON THE NONEXISTENCE OF SPACELIKE HYPERSURFACES WITH POLYNOMIAL VOLUME GROWTH IMMERSED IN A LORENTZIAN SPACE FORM
    de Lima, Henrique Fernandes
    ARCHIVUM MATHEMATICUM, 2022, 58 (03): : 169 - 175
  • [7] Spacelike Dupin hypersurfaces in Lorentzian space forms
    Li, Tongzhu
    Nie, Changxiong
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (02) : 463 - 480
  • [8] ON THE FIRST EIGENVALUE OF SPACELIKE HYPERSURFACES IN LORENTZIAN SPACE
    Wu Bing-Ye
    ARCHIVUM MATHEMATICUM, 2006, 42 (03): : 233 - 238
  • [9] COMPLETE SPACELIKE HYPERSURFACES WITH CMC IN LORENTZ EINSTEIN MANIFOLDS
    Liu, Jiancheng
    Xie, Xun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (05) : 1053 - 1068
  • [10] Complete Linear Weingarten Spacelike Hypersurfaces Immersed in a Locally Symmetric Lorentz Space
    Henrique F. de Lima
    Joseílson R. de Lima
    Results in Mathematics, 2013, 63 : 865 - 876