A non-existence theorem for a semilinear Dirichlet problem involving critical exponent on halfspaces of the Heisenberg group

被引:0
作者
Francesco Uguzzoni
机构
[1] Dipartimento di Matematica,
[2] Università di Bologna,undefined
[3] Piazza di Porta S. Donato 5,undefined
[4] I-40127 Bologna,undefined
[5] Italy,undefined
[6] e-mail: ugzuzzoni@dm.unibo.it,undefined
来源
Nonlinear Differential Equations and Applications NoDEA | 1999年 / 6卷
关键词
Weak Solution; Recent Result; Dirichlet Problem; Critical Exponent; Heisenberg Group;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \Delta _ {{\Bbb H}^n}$\end{document} be the Kohn Laplacian on the Heisenberg group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\Bbb H}^n $\end{document} and let Q = 2n + 2 be the homogeneous dimension of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\Bbb H}^n $\end{document}. In this note, completing a recent result obtained with E. Lanconelli [9], we prove that, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \Pi $\end{document} is a halfspace of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\Bbb H}^n $\end{document}, then the critical Dirichlet problem ¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ (^*) \qquad - \Delta _{{\Bbb H}^n}u = u^{{Q+2} \over {Q-2}} \qquad {\rm in} \, \Pi, \qquad u = 0 \qquad {\rm in} \, \partial \Pi$\end{document},¶¶ has no nontrivial nonnegative weak solutions. This result enables to improve a representation theorem by Citti [2], for Palais-Smale sequences related to the equation in (*).
引用
收藏
页码:191 / 206
页数:15
相关论文
empty
未找到相关数据