Electronic band Gap of ZnO under triaxial strain

被引:0
|
作者
Guoqiang Qin
Guanglei Zhang
Jinhui Yang
Gang Yu
Hua Fu
Fengqiu Ji
机构
[1] Shijiazhuang Tiedao University,School of Materials Science and Engineering
[2] State Key Laboratory of Metastable Materials Science and Technology (Yanshan University),undefined
关键词
first principles calculations; ZnO; strain; band gap;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of triaxial strains on the band gap of wurtzite ZnO has been investigated by the first principles calculations. The results indicate that, after application of triaxial strain, the wurtzite ZnO is still a direct band gap semiconductor with conduction- and valence-band minima remains at the Γ point. Comparing with the unstrained ZnO, the Eg at Γ point increases under compressive strain but decreases under tensile strain. This triaxial strain model is in better agreement with the experimental results than the widely-employed in-plane biaxial strain model, thus providing a more accurate explanation on the behaviors of ZnO thin film under three-dimensional strain.
引用
收藏
页码:48 / 51
页数:3
相关论文
共 50 条
  • [41] Tuning the band gap of ZnO nanoparticles by ultrasonic irradiation
    R. S. Yadav
    P. Mishra
    A. C. Pandey
    Inorganic Materials, 2010, 46 : 163 - 167
  • [42] Na to tailor the band gap and morphology of ZnO nanograins
    R. Krithiga
    S. Sankar
    G. Subhashree
    Journal of Materials Science: Materials in Electronics, 2014, 25 : 103 - 110
  • [43] New methods for determining the band gap behavior of ZnO
    Li, Feng
    Liu, Changshi
    Ma, Zhongquan
    Zhao, Lei
    OPTICAL MATERIALS, 2012, 34 (07) : 1062 - 1066
  • [44] Investigation of energy band gap in polymer/ZnO nanocomposites
    Haider Mohammed Shanshool
    Muhammad Yahaya
    Wan Mahmood Mat Yunus
    Ibtisam Yahya Abdullah
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 9804 - 9811
  • [45] PEG induced tunable morphology and band gap of ZnO
    Zheng, Wenji
    Ding, Rui
    Yan, Xiaoming
    He, Gaohong
    MATERIALS LETTERS, 2017, 201 : 85 - 88
  • [46] Na to tailor the band gap and morphology of ZnO nanograins
    Krithiga, R.
    Sankar, S.
    Subhashree, G.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2014, 25 (01) : 103 - 110
  • [47] Augmentation of band gap and photoemission in ZnO by Li doping
    Krithiga, R.
    Sankar, S.
    Subhashree, G.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2014, 25 (12) : 5201 - 5207
  • [48] Band gap reduction of ZnO for photoelectrochemical splitting of water
    Yan, Yanfa
    Ahn, K. -S.
    Shet, S.
    Deutsch, T.
    Huda, M.
    Wei, S. H.
    Turner, J.
    Al-Jassim, M. M.
    SOLAR HYDROGEN AND NANOTECHNOLOGY II, 2007, 6650
  • [49] FACILE SYNTHESIS OF LOW BAND GAP ZnO MICROSTRUCTURES
    Ovando-Medina, V. M.
    Farias-Cepeda, L.
    Perez-Aguilar, N., V
    Rivera de la Rosa, J.
    Martinez-Gutierrez, H.
    Galarza, A. Romero
    Cervantes-Gonzalez, E.
    Cayetano-Castro, N.
    REVISTA MEXICANA DE INGENIERIA QUIMICA, 2018, 17 (02): : 455 - 462
  • [50] Tailoring the band gap of ZnO nanostructures using chromium
    Mangamma, G.
    Sairam, T. N.
    Chitra, M.
    Manikandan, M.
    PHYSICA B-CONDENSED MATTER, 2021, 610