Approximating fixed points for continuous functions on an arbitrary interval

被引:0
作者
Prasit Cholamjiak
Nattawut Pholasa
机构
[1] University of Phayao,School of Science
来源
Journal of Inequalities and Applications | / 2013卷
关键词
continuous function; convergence theorem; fixed point; iteration;
D O I
暂无
中图分类号
学科分类号
摘要
In this research article, we introduce a new iterative method for solving a fixed point problem of continuous functions on an arbitrary interval. We then prove the convergence theorem of the proposed algorithm. We finally give numerical examples to compare the result with Mann, Ishikawa and Noor iterations. Our main results extend the corresponding results in the literature.
引用
收藏
相关论文
共 13 条
[1]  
Mann WR(1953)Mean value methods in iteration Proc. Am. Math. Soc 4 506-510
[2]  
Borwein D(1991)Fixed point iterations for real functions J. Math. Anal. Appl 157 112-126
[3]  
Borwein J(1974)Fixed points by a new iteration method Proc. Am. Math. Soc 44 147-150
[4]  
Ishikawa S(2006)The necessary and sufficient condition for the convergence of Ishikawa iteration on an arbitrary interval J. Math. Anal. Appl 323 1383-1386
[5]  
Qing Y(2011)Convergence of Ishikawa iteration with error terms on an arbitrary interval Commun. Korean Math. Soc 26 229-235
[6]  
Qihou L(2000)New approximation schemes for general variational inequalities J. Math. Anal. Appl 251 217-229
[7]  
Qing Y(2011)On the rate of convergence of Mann Ishikawa, Noor and SP iterations for continuous functions on an arbitrary interval J. Comput. Appl. Math 235 3006-3014
[8]  
Cho SY(2010)The necessary and sufficient condition for the convergence of a new fixed point approximation method for continuous functions on an arbitrary interval Thai J. Math 8 627-632
[9]  
Qin X(undefined)undefined undefined undefined undefined-undefined
[10]  
Noor MA(undefined)undefined undefined undefined undefined-undefined