Differential inequalities and quasi-normal families

被引:0
作者
Roi Bar
Jürgen Grahl
Shahar Nevo
机构
[1] Bar-Ilan University,Department of Mathematics
[2] University of Würzburg,Department of Mathematics
来源
Analysis and Mathematical Physics | 2014年 / 4卷
关键词
Quasi-normal families; Normal families; Zalcman’s lemma; Marty’s theorem; Differential inequalities; 30D45; 30A10;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} of meromorphic functions in a domain D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} satisfying |f(k)|1+|f(j)|α(z)≥Cforallz∈Dandallf∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{|f^{(k)}|}{1+|f^{(j)}|^\alpha }(z)\ge C \qquad \text{ for } \text{ all } z\in D \text{ and } \text{ all } f\in \mathcal {F}\end{aligned}$$\end{document}(where k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} and j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j$$\end{document} are integers with k>j≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>j\ge 0$$\end{document} and C>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C>0$$\end{document}, α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document} are real numbers) is quasi-normal. Furthermore, if all functions in F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} are holomorphic, the order of quasi-normality of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is at most j-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j-1$$\end{document}. The proof relies on the Zalcman rescaling method and previous results on differential inequalities constituting normality.
引用
收藏
页码:63 / 71
页数:8
相关论文
共 14 条
  • [1] Chen H(1993)An improvement of Marty’s criterion and its applications Sci. Sinica Ser. A 36 674-681
  • [2] Gu Y(2013)A general differential inequality of the Ann. Acad. Sci. Fenn. 38 691-695
  • [3] Chen Q(2012)-th derivative that leads to normality J. Anal. Math. 117 119-128
  • [4] Nevo S(1979)Spherical derivatives and normal families Sci. Sinica (special issue) 1 267-274
  • [5] Pang X-C(2006)A criterion for normality of families of meromorphic functions J. Math. Anal. Appl. 320 192-204
  • [6] Grahl J(1989)From normality to Sci. Sinica 7 782-791
  • [7] Nevo S(1990)-normality Sci. Sinica 5 521-527
  • [8] Gu Y(2000)Bloch’s principle and normal criterion Bull. Lond. Math. Soc. 32 325-331
  • [9] Nevo S(1975)On normal criterion of meromorphic functions Am. Math. Monthly 82 813-817
  • [10] Pang X(undefined)Normal families and shared values undefined undefined undefined-undefined