On a generalization of a relatively nonexpansive mapping and best proximity pair

被引:0
作者
Chaira, Karim [1 ]
Seddoug, Belkassem [1 ]
机构
[1] CRMEF Rabat Sale Kenitra, Dept Math, Ave Allal Al Fassi,BP 6210, Rabat 10000, Morocco
来源
FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING | 2023年 / 2023卷 / 01期
关键词
Fixed point; Cyclic and noncyclic; Relatively nonexpansive mapping; Uniformly convex Banach space; EXISTENCE;
D O I
10.1186/s13663-023-00754-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be two nonempty subsets of a normed space X, and let T:A boolean OR B -> A boolean OR B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T: A \cup B \to A \cup B$\end{document} be a cyclic (resp., noncyclic) mapping. The objective of this paper is to establish weak conditions on T that ensure its relative nonexpansiveness.The idea is to recover the results mentioned in two papers by Matkowski (Banach J. Math. Anal. 2:237-244, 2007; J. Fixed Point Theory Appl. 24:70, 2022), by replacing the nonexpansive mapping f:C -> C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: C \to C$\end{document} with a cyclic (resp., noncyclic) relatively nonexpansive mapping to obtain the best proximity pair. Additionally, we provide an application to a functional equation.
引用
收藏
页数:15
相关论文
共 14 条
[1]  
Basha S. S., 1997, Acta Sci. Math., V63, P289
[2]  
Basha SS, 2001, INDIAN J PURE AP MAT, V32, P1237
[4]  
Carathodory K., 1927, Vorlesungen ber reelle Funktionen, DOI [10.1007/978-3-663-15768-7, DOI 10.1007/978-3-663-15768-7]
[5]   Best Proximity Pairs in Ultrametric Spaces [J].
Chaira, Karim ;
Dovgoshey, Oleksiy ;
Lazaiz, Samih .
P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2021, 13 (04) :255-265
[6]  
Clarkson JA, 1936, T AM MATH SOC, V40, P396
[7]   Existence and convergence of best proximity points [J].
Eldred, A. Anthony ;
Veeramani, P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1001-1006
[8]   Proximal normal structure and relatively nonexpansive mappings [J].
Eldred, AA ;
Kirk, WA ;
Veeramani, P .
STUDIA MATHEMATICA, 2005, 171 (03) :283-293
[9]   ZUM PRINZIP DER KONTRAKTIVEN ABBILDUNG [J].
GOHDE, D .
MATHEMATISCHE NACHRICHTEN, 1965, 30 (3-4) :251-&
[10]   A FIXED POINT THEOREM FOR MAPPINGS WHICH DO NOT INCREASE DISTANCES [J].
KIRK, WA .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09) :1004-&