Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean

被引:0
|
作者
Radomyra Shevchenko
Ciprian A. Tudor
机构
[1] TU Dortmund,Fakultät für Mathematik, LSIV
[2] CNRS,Laboratoire Paul Painlevé UMR 8524
[3] Université de Lille,ISMMA
[4] Romanian Academy,undefined
来源
Statistical Inference for Stochastic Processes | 2020年 / 23卷
关键词
Rosenblatt process; Parameter estimation; Malliavin calculus; Multiple Wiener–Itô integrals; Strong consistency; Asymptotic normality; Ornstein–Uhlenbeck process; Periodic mean function; Least squares estimator; 60H15; 60H07; 60G35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the least squares estimator for the drift parameter of the Langevin stochastic equation driven by the Rosenblatt process. Using the techniques of the Malliavin calculus and the stochastic integration with respect to the Rosenblatt process, we analyze the consistency and the asymptotic distribution of this estimator. We also introduce alternative estimators, which can be simulated, and we study their asymptotic properties.
引用
收藏
页码:227 / 247
页数:20
相关论文
共 50 条
  • [31] Parameter Estimation for Ornstein-Uhlenbeck Driven by Ornstein-Uhlenbeck Processes with Small Levy Noises
    Zhang, Xuekang
    Shu, Huisheng
    Yi, Haoran
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 78 - 98
  • [32] Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean for general Hurst parameter
    Yu, Qian
    STATISTICAL PAPERS, 2021, 62 (02) : 795 - 815
  • [33] Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter
    Yaozhong Hu
    David Nualart
    Hongjuan Zhou
    Statistical Inference for Stochastic Processes, 2019, 22 : 111 - 142
  • [34] Trajectory fitting estimation for integrated Ornstein-Uhlenbeck process driven by Lévy process
    Zhang, Xuekang
    Wu, Xiaotai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025, 54 (09) : 2565 - 2577
  • [35] PARAMETER ESTIMATION FOR RECIPROCAL GAMMA ORNSTEIN UHLENBECK TYPE PROCESSES
    Leonenko, N.
    Sakhno, L.
    Suvak, N.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2012, 86 : 121 - 137
  • [36] Parameter estimation for the skew Ornstein-Uhlenbeck processes based on discrete observations
    Xing, Xiaoyu
    Zhao, Danfeng
    Li, Bing
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (09) : 2176 - 2188
  • [37] Parameter estimation for threshold Ornstein-Uhlenbeck processes from discrete observations
    Hu, Yaozhong
    Xi, Yuejuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
  • [38] Distribution of the mean reversion estimator in the Ornstein-Uhlenbeck process
    Bao, Yong
    Ullah, Aman
    Wang, Yun
    ECONOMETRIC REVIEWS, 2017, 36 (6-9) : 1039 - 1056
  • [39] Moderate Deviations for the Parameter Estimation in the Fractional Ornstein-Uhlenbeck Process with H ∈ (0,1/2)
    Jiang, Hui
    Yang, Qing-shan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024,
  • [40] Parameter Estimation of Complex Fractional Ornstein-Uhlenbeck Processes with Fractional Noise
    Chen, Yong
    Hu, Yaozhong
    Wang, Zhi
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 613 - 629