Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean

被引:0
|
作者
Radomyra Shevchenko
Ciprian A. Tudor
机构
[1] TU Dortmund,Fakultät für Mathematik, LSIV
[2] CNRS,Laboratoire Paul Painlevé UMR 8524
[3] Université de Lille,ISMMA
[4] Romanian Academy,undefined
来源
Statistical Inference for Stochastic Processes | 2020年 / 23卷
关键词
Rosenblatt process; Parameter estimation; Malliavin calculus; Multiple Wiener–Itô integrals; Strong consistency; Asymptotic normality; Ornstein–Uhlenbeck process; Periodic mean function; Least squares estimator; 60H15; 60H07; 60G35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the least squares estimator for the drift parameter of the Langevin stochastic equation driven by the Rosenblatt process. Using the techniques of the Malliavin calculus and the stochastic integration with respect to the Rosenblatt process, we analyze the consistency and the asymptotic distribution of this estimator. We also introduce alternative estimators, which can be simulated, and we study their asymptotic properties.
引用
收藏
页码:227 / 247
页数:20
相关论文
共 50 条
  • [21] Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Lévy Noises
    Xuekang Zhang
    Huisheng Shu
    Haoran Yi
    Journal of Theoretical Probability, 2023, 36 : 78 - 98
  • [22] Parameter Estimation for Ornstein-Uhlenbeck Process with Small Fractional Levy Noises
    Xu, Fang
    Zhao, Yongfei
    Wei, Chao
    ENGINEERING LETTERS, 2022, 30 (04) : 1566 - 1572
  • [23] PARAMETER ESTIMATION FOR AN ORNSTEIN-UHLENBECK PROCESS DRIVEN BY A GENERAL GAUSSIAN NOISE
    Chen, Yong
    Zhou, Hongjuan
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (02) : 573 - 595
  • [24] Asymptotic properties for the parameter estimation in Ornstein-Uhlenbeck process with discrete observations
    Jiang, Hui
    Liu, Hui
    Zhou, Youzhou
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3192 - 3229
  • [25] Parameter estimation for Ornstein-Uhlenbeck processes driven by fractional Levy process
    Shen, Guangjun
    Li, Yunmeng
    Gao, Zhenlong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [26] Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter
    Qian Yu
    Statistical Papers, 2021, 62 : 795 - 815
  • [27] Parameter Estimation for an Ornstein-Uhlenbeck Process Driven by a General Gaussian Noise
    Yong Chen
    Hongjuan Zhou
    Acta Mathematica Scientia, 2021, 41 : 573 - 595
  • [28] LIMIT BEHAVIOR OF THE ROSENBLATT ORNSTEIN-UHLENBECK PROCESS WITH RESPECT TO THE HURST INDEX
    Slaoui, M.
    Tudor, C. A.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 98 : 173 - 187
  • [29] Parameter estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise
    El Onsy, Brahim
    Es-Sebaiy, Khalifa
    Viens, Frederi G.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2017, 89 (02) : 431 - 468
  • [30] Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean
    Salwa Bajja
    Khalifa Es-Sebaiy
    Lauri Viitasaari
    Journal of the Korean Statistical Society, 2017, 46 : 608 - 622