Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean

被引:0
|
作者
Radomyra Shevchenko
Ciprian A. Tudor
机构
[1] TU Dortmund,Fakultät für Mathematik, LSIV
[2] CNRS,Laboratoire Paul Painlevé UMR 8524
[3] Université de Lille,ISMMA
[4] Romanian Academy,undefined
来源
Statistical Inference for Stochastic Processes | 2020年 / 23卷
关键词
Rosenblatt process; Parameter estimation; Malliavin calculus; Multiple Wiener–Itô integrals; Strong consistency; Asymptotic normality; Ornstein–Uhlenbeck process; Periodic mean function; Least squares estimator; 60H15; 60H07; 60G35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the least squares estimator for the drift parameter of the Langevin stochastic equation driven by the Rosenblatt process. Using the techniques of the Malliavin calculus and the stochastic integration with respect to the Rosenblatt process, we analyze the consistency and the asymptotic distribution of this estimator. We also introduce alternative estimators, which can be simulated, and we study their asymptotic properties.
引用
收藏
页码:227 / 247
页数:20
相关论文
共 50 条
  • [11] Parameter identification for the Hermite Ornstein-Uhlenbeck process
    Assaad, Obayda
    Tudor, Ciprian A.
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 251 - 270
  • [12] Ergodicity and Drift Parameter Estimation for Infinite-Dimensional Fractional Ornstein–Uhlenbeck Process of the Second Kind
    Maoudo Faramba Balde
    Khalifa Es-Sebaiy
    Ciprian A. Tudor
    Applied Mathematics & Optimization, 2020, 81 : 785 - 814
  • [13] THE LEAST SQUARES ESTIMATOR FOR AN ORNSTEIN-UHLENBECK PROCESS DRIVEN BY A HERMITE PROCESS WITH A PERIODIC MEAN
    Shen, Guangjun
    Yu, Qian
    Tang, Zheng
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (02) : 517 - 534
  • [14] On parameter estimation of hidden ergodic Ornstein-Uhlenbeck process
    Kutoyants, Yury A.
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 4508 - 4526
  • [15] Ergodicity and Drift Parameter Estimation for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process of the Second Kind
    Balde, Maoudo Faramba
    Es-Sebaiy, Khalifa
    Tudor, Ciprian A.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (03) : 785 - 814
  • [16] Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind
    Azmoodeh, Ehsan
    Morlanes, Jose Igor
    STATISTICS, 2015, 49 (01) : 1 - 18
  • [17] Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean
    Bajja, Salwa
    Es-Sebaiy, Khalifa
    Viitasaari, Lauri
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (04) : 608 - 622
  • [18] Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind
    Azmoodeh E.
    Viitasaari L.
    Statistical Inference for Stochastic Processes, 2015, 18 (3) : 205 - 227
  • [19] The Least Squares Estimator for an Ornstein-Uhlenbeck Process Driven by a Hermite Process with a Periodic Mean
    Guangjun Shen
    Qian Yu
    Zheng Tang
    Acta Mathematica Scientia, 2021, 41 : 517 - 534
  • [20] Parameter estimation for reflected Ornstein–Uhlenbeck processes with discrete observations
    Hu Y.
    Lee C.
    Lee M.H.
    Song J.
    Statistical Inference for Stochastic Processes, 2015, 18 (3) : 279 - 291